These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20831831)

  • 1. The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems.
    Geifman N; Monsonego A; Rubin E
    BMC Bioinformatics; 2010 Sep; 11():458. PubMed ID: 20831831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.
    Lewin A; Grieve IC
    BMC Bioinformatics; 2006 Oct; 7():426. PubMed ID: 17018143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GOMA: functional enrichment analysis tool based on GO modules.
    Huang Q; Wu LY; Wang Y; Zhang XS
    Chin J Cancer; 2013 Apr; 32(4):195-204. PubMed ID: 23237213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEGS: search for enriched gene sets in microarray data.
    Trajkovski I; Lavrac N; Tolar J
    J Biomed Inform; 2008 Aug; 41(4):588-601. PubMed ID: 18234563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes.
    Boyle EI; Weng S; Gollub J; Jin H; Botstein D; Cherry JM; Sherlock G
    Bioinformatics; 2004 Dec; 20(18):3710-5. PubMed ID: 15297299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data.
    van den Berg BH; Thanthiriwatte C; Manda P; Bridges SM
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S9. PubMed ID: 19811693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic, context-specific generation of Gene Ontology slims.
    Davis MJ; Sehgal MS; Ragan MA
    BMC Bioinformatics; 2010 Oct; 11():498. PubMed ID: 20929524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.
    Alexa A; Rahnenführer J; Lengauer T
    Bioinformatics; 2006 Jul; 22(13):1600-7. PubMed ID: 16606683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL.
    Mutowo P; Bento AP; Dedman N; Gaulton A; Hersey A; Lomax J; Overington JP
    J Biomed Semantics; 2016 Sep; 7(1):59. PubMed ID: 27678076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations.
    Du P; Feng G; Flatow J; Song J; Holko M; Kibbe WA; Lin SM
    Bioinformatics; 2009 Jun; 25(12):i63-8. PubMed ID: 19478018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Missing value imputation for microRNA expression data by using a GO-based similarity measure.
    Yang Y; Xu Z; Song D
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26818962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying informative subsets of the Gene Ontology with information bottleneck methods.
    Jin B; Lu X
    Bioinformatics; 2010 Oct; 26(19):2445-51. PubMed ID: 20702400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis.
    Kosch R; Delarocque J; Claus P; Becker SC; Jung K
    BMC Genomics; 2018 Jul; 19(1):530. PubMed ID: 30001706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms.
    Smid M; Dorssers LC
    Bioinformatics; 2004 Nov; 20(16):2618-25. PubMed ID: 15130934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding biological process modifications in cancer tissues by mining gene expression correlations.
    Gamberoni G; Storari S; Volinia S
    BMC Bioinformatics; 2006 Jan; 7():6. PubMed ID: 16401337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating gene ontology into fuzzy relational clustering of microarray gene expression data.
    Paul AK; Shill PC
    Biosystems; 2018 Jan; 163():1-10. PubMed ID: 29113811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations.
    Agapito G; Milano M; Guzzi PH; Cannataro M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):197-208. PubMed ID: 27045823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic retrieval and visualization of biologically relevant microarray experiments.
    Caldas J; Gehlenborg N; Faisal A; Brazma A; Kaski S
    Bioinformatics; 2009 Jun; 25(12):i145-53. PubMed ID: 19477980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taxonomy-based partitioning of the Gene Ontology.
    Kuśnierczyk W
    J Biomed Inform; 2008 Apr; 41(2):282-92. PubMed ID: 17921072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.