BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

791 related articles for article (PubMed ID: 20831887)

  • 1. Intravesical drug delivery: Challenges, current status, opportunities and novel strategies.
    GuhaSarkar S; Banerjee R
    J Control Release; 2010 Dec; 148(2):147-59. PubMed ID: 20831887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New frontiers in intravesical therapies and drug delivery.
    Giannantoni A; Di Stasi SM; Chancellor MB; Costantini E; Porena M
    Eur Urol; 2006 Dec; 50(6):1183-93; discussion 1193. PubMed ID: 16963179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery.
    GuhaSarkar S; More P; Banerjee R
    J Control Release; 2017 Jan; 245():147-156. PubMed ID: 27913307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue uptake of docetaxel loaded hydrophobically derivatized hyperbranched polyglycerols and their effects on the morphology of the bladder urothelium.
    Mugabe C; Raven PA; Fazli L; Baker JH; Jackson JK; Liggins RT; So AI; Gleave ME; Minchinton AI; Brooks DE; Burt HM
    Biomaterials; 2012 Jan; 33(2):692-703. PubMed ID: 22014457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced permeability of the urinary bladder wall: the role of polymer charge.
    Kerec Kos M; Bogataj M; Mrhar A
    Pharmazie; 2009 Apr; 64(4):232-7. PubMed ID: 19435140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy.
    Lu S; Neoh KG; Kang ET; Mahendran R; Chiong E
    Eur J Pharm Sci; 2015 May; 72():57-68. PubMed ID: 25772330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparin decreases permeability of pig urinary bladder wall preliminarily enhanced by chitosan.
    Kos MK; Bogataj M; Mrhar A
    Drug Dev Ind Pharm; 2008 Feb; 34(2):215-20. PubMed ID: 18302041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local drug delivery to bladder using technology innovations.
    Tyagi P; Tyagi S; Kaufman J; Huang L; de Miguel F
    Urol Clin North Am; 2006 Nov; 33(4):519-30, x. PubMed ID: 17011388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors.
    Bilensoy E; Sarisozen C; Esendağli G; Doğan AL; Aktaş Y; Sen M; Mungan NA
    Int J Pharm; 2009 Apr; 371(1-2):170-6. PubMed ID: 19135514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained intravesical drug delivery using thermosensitive hydrogel.
    Tyagi P; Li Z; Chancellor M; De Groat WC; Yoshimura N; Huang L
    Pharm Res; 2004 May; 21(5):832-7. PubMed ID: 15180342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly - (l) - glutamic acid drug delivery system for the intravesical therapy of bladder cancer using WGA as targeting moiety.
    Apfelthaler C; Anzengruber M; Gabor F; Wirth M
    Eur J Pharm Biopharm; 2017 Jun; 115():131-139. PubMed ID: 28237713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model of drug distribution in the urinary bladder wall following intravesical instillation.
    Grabnar I; Bogataj M; Belic A; Logar V; Karba R; Mrhar A
    Int J Pharm; 2006 Sep; 322(1-2):52-9. PubMed ID: 16806751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder.
    Barthelmes J; Perera G; Hombach J; Dünnhaupt S; Bernkop-Schnürch A
    Int J Pharm; 2011 Sep; 416(1):339-45. PubMed ID: 21726619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocarriers.
    Torchilin VP
    Pharm Res; 2007 Dec; 24(12):2333-4. PubMed ID: 17934800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy.
    Lu Z; Yeh TK; Tsai M; Au JL; Wientjes MG
    Clin Cancer Res; 2004 Nov; 10(22):7677-84. PubMed ID: 15570001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bladder wall penetration of intravesical mitomycin C in dogs.
    Wientjes MG; Dalton JT; Badalament RA; Drago JR; Au JL
    Cancer Res; 1991 Aug; 51(16):4347-54. PubMed ID: 1907883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy.
    Erdogar N; İskit AB; Eroglu H; Sargon MF; Mungan NA; Bilensoy E
    Int J Pharm; 2014 Aug; 471(1-2):1-9. PubMed ID: 24836669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivering instilled hydrophobic drug to the bladder by a cationic nanoparticle and thermo-sensitive hydrogel composite system.
    Men K; Liu W; Li L; Duan X; Wang P; Gou M; Wei X; Gao X; Wang B; Du Y; Huang M; Chen L; Qian Z; Wei Y
    Nanoscale; 2012 Oct; 4(20):6425-33. PubMed ID: 22955255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmaceutical approaches to colon targeted drug delivery systems.
    Chourasia MK; Jain SK
    J Pharm Pharm Sci; 2003; 6(1):33-66. PubMed ID: 12753729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.