These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20832057)

  • 1. Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35.
    Drerup JM; Hayashi K; Cui H; Mettlach GL; Long MA; Marvin M; Sun X; Goldberg MS; Lutter M; Bibb JA
    Biol Psychiatry; 2010 Dec; 68(12):1163-71. PubMed ID: 20832057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice lacking p35 display hyperactivity and paradoxical response to psychostimulants.
    Krapacher FA; Mlewski EC; Ferreras S; Pisano V; Paolorossi M; Hansen C; Paglini G
    J Neurochem; 2010 Jul; 114(1):203-14. PubMed ID: 20403084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate.
    Michaelides M; Pascau J; Gispert JD; Delis F; Grandy DK; Wang GJ; Desco M; Rubinstein M; Volkow ND; Thanos PK
    Eur J Neurosci; 2010 Aug; 32(4):668-76. PubMed ID: 20646063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of Cdk5 activity is involved on Dopamine Transporter expression and function: Evidences from an animal model of Attention-Deficit Hyperactivity Disorder.
    Fernández G; Krapacher F; Ferreras S; Quassollo G; Mari MM; Pisano MV; Montemerlo A; Rubianes MD; Bregonzio C; Arias C; Paglini MG
    Exp Neurol; 2021 Dec; 346():113866. PubMed ID: 34537209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant regulation of synchronous network activity by the attention-deficit/hyperactivity disorder-associated human dopamine D4 receptor variant D4.7 in the prefrontal cortex.
    Zhong P; Liu W; Yan Z
    J Physiol; 2016 Jan; 594(1):135-47. PubMed ID: 26541360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NK1 (TACR1) receptor gene 'knockout' mouse phenotype predicts genetic association with ADHD.
    Yan TC; McQuillin A; Thapar A; Asherson P; Hunt SP; Stanford SC; Gurling H
    J Psychopharmacol; 2010 Jan; 24(1):27-38. PubMed ID: 19204064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of learning and increase in dopamine level in the frontal cortex by methylphenidate in mice lacking dopamine transporter.
    Takamatsu Y; Hagino Y; Sato A; Takahashi T; Nagasawa SY; Kubo Y; Mizuguchi M; Uhl GR; Sora I; Ikeda K
    Curr Mol Med; 2015; 15(3):245-52. PubMed ID: 25817856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment.
    del Campo N; Fryer TD; Hong YT; Smith R; Brichard L; Acosta-Cabronero J; Chamberlain SR; Tait R; Izquierdo D; Regenthal R; Dowson J; Suckling J; Baron JC; Aigbirhio FI; Robbins TW; Sahakian BJ; Müller U
    Brain; 2013 Nov; 136(Pt 11):3252-70. PubMed ID: 24163364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats.
    dos Santos Pereira M; Sathler MF; Valli Tda R; Marques RS; Ventura AL; Peccinalli NR; Fraga MC; Manhães AC; Kubrusly R
    PLoS One; 2015; 10(10):e0141249. PubMed ID: 26509840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention-Deficit/Hyperactivity Disorder-like Phenotype in a Mouse Model with Impaired Actin Dynamics.
    Zimmermann AM; Jene T; Wolf M; Görlich A; Gurniak CB; Sassoè-Pognetto M; Witke W; Friauf E; Rust MB
    Biol Psychiatry; 2015 Jul; 78(2):95-106. PubMed ID: 24768258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice.
    Beaulieu JM; Sotnikova TD; Gainetdinov RR; Caron MG
    J Biol Chem; 2006 Oct; 281(43):32072-80. PubMed ID: 16954211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice.
    Koda K; Ago Y; Cong Y; Kita Y; Takuma K; Matsuda T
    J Neurochem; 2010 Jul; 114(1):259-70. PubMed ID: 20403082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction.
    Arnsten AF
    CNS Drugs; 2009; 23 Suppl 1():33-41. PubMed ID: 19621976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early stress and chronic methylphenidate cross-sensitize dopaminergic responses in the adolescent medial prefrontal cortex and nucleus accumbens.
    Jezierski G; Zehle S; Bock J; Braun K; Gruss M
    J Neurochem; 2007 Dec; 103(6):2234-44. PubMed ID: 17924950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.
    Hall FS; Sora I; Hen R; Uhl GR
    PLoS One; 2014; 9(12):e115009. PubMed ID: 25514162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder.
    Wilens TE
    J Clin Psychopharmacol; 2008 Jun; 28(3 Suppl 2):S46-53. PubMed ID: 18480677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for cortical dopamine in the paradoxical calming effects of psychostimulants.
    Harris SS; Green SM; Kumar M; Urs NM
    Sci Rep; 2022 Feb; 12(1):3129. PubMed ID: 35210489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey.
    Kodama T; Kojima T; Honda Y; Hosokawa T; Tsutsui KI; Watanabe M
    J Neurosci; 2017 Mar; 37(9):2387-2394. PubMed ID: 28154152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD.
    Cheng J; Liu A; Shi MY; Yan Z
    Neuropsychopharmacology; 2017 Sep; 42(10):2096-2104. PubMed ID: 28176786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Baicalin regulates the dopamine system to control the core symptoms of ADHD.
    Zhou R; Wang J; Han X; Ma B; Yuan H; Song Y
    Mol Brain; 2019 Feb; 12(1):11. PubMed ID: 30736828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.