BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20832096)

  • 1. Influence of Ca(2+) and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media.
    Liu X; Wazne M; Chou T; Xiao R; Xu S
    Water Res; 2011 Jan; 45(1):105-12. PubMed ID: 20832096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes.
    Liu X; Wazne M; Han Y; Christodoulatos C; Jasinkiewicz KL
    J Colloid Interface Sci; 2010 Aug; 348(1):101-7. PubMed ID: 20483427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL; Elimelech M
    J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ; Zhou D; Keller AA
    J Hazard Mater; 2011 May; 189(1-2):556-63. PubMed ID: 21429667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.
    Mohd Omar F; Abdul Aziz H; Stoll S
    Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.
    Akaighe N; Depner SW; Banerjee S; Sohn M
    Chemosphere; 2013 Jul; 92(4):406-12. PubMed ID: 23422173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter.
    Baalousha M
    Sci Total Environ; 2009 Mar; 407(6):2093-101. PubMed ID: 19059631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disaggregation of silver nanoparticle homoaggregates in a river water matrix.
    Metreveli G; Philippe A; Schaumann GE
    Sci Total Environ; 2015 Dec; 535():35-44. PubMed ID: 25433382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter.
    Akaighe N; Depner SW; Banerjee S; Sharma VK; Sohn M
    Sci Total Environ; 2012 Dec; 441():277-89. PubMed ID: 23164532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells.
    Ahire JH; Chambrier I; Mueller A; Bao Y; Chao Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7384-91. PubMed ID: 23815685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2010 Apr; 44(7):2412-8. PubMed ID: 20184360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter.
    Baalousha M; Manciulea A; Cumberland S; Kendall K; Lead JR
    Environ Toxicol Chem; 2008 Sep; 27(9):1875-82. PubMed ID: 19086206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry.
    Afrooz AR; Khan IA; Hussain SM; Saleh NB
    Environ Sci Technol; 2013 Feb; 47(4):1853-60. PubMed ID: 23360522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.