These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20832346)

  • 1. Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements.
    Guimera A; Ivorra A; Gabriel G; Villa R
    Med Eng Phys; 2010 Dec; 32(10):1107-15. PubMed ID: 20832346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of corneal endothelial impedance with non-invasive external electrodes--a theoretical study.
    Mandel Y; Laufer S; Rubinsky B
    Med Eng Phys; 2012 Mar; 34(2):195-201. PubMed ID: 21835678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements.
    Guimera A; Gabriel G; Plata-Cordero M; Montero L; Maldonado MJ; Villa R
    Biosens Bioelectron; 2012 Jan; 31(1):55-61. PubMed ID: 22019100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible probe for in vivo quantification of corneal epithelium permeability through non-invasive tetrapolar impedance measurements.
    Guimerà A; Illa X; Traver E; Plata-Cordero M; Yeste J; Herrero C; Lagunas C; Maldonado MJ; Villa R
    Biomed Microdevices; 2013 Oct; 15(5):849-58. PubMed ID: 23660841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of emboli in vessels using electrical impedance measurements--phantom and electrodes.
    Nebuya S; Noshiro M; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2005 Apr; 26(2):S111-8. PubMed ID: 15798224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW; Wang MH; Jang LS
    Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.
    Ramos A; Bertemes-Filho P
    Electromagn Biol Med; 2011 Dec; 30(4):235-45. PubMed ID: 22047461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode contact impedance sensitivity to variations in geometry.
    Cardu R; Leong PH; Jin CT; McEwan A
    Physiol Meas; 2012 May; 33(5):817-30. PubMed ID: 22531168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability of the limiting cell layers of the cornea in vivo.
    Schalnus R; Ohrloff C
    Lens Eye Toxic Res; 1990; 7(3-4):371-84. PubMed ID: 2100167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of conformal transformation to elliptic geometry for electric impedance tomography.
    Yilmaz A; Akdoğan KE; Saka B
    Med Eng Phys; 2008 Mar; 30(2):144-53. PubMed ID: 17509923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of protein tyrosine phosphorylation in the cell-cell interactions, junctional permeability and cell cycle control in post-confluent bovine corneal endothelial cells.
    Chen WL; Lin CT; Lo HF; Lee JW; Tu IH; Hu FR
    Exp Eye Res; 2007 Aug; 85(2):259-69. PubMed ID: 17624326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight junctions of the human corneal endothelium: morphological and electrophysiological features.
    Noske W; Fromm M; Levarlet B; Kreusel KM; Hirsch M
    Ger J Ophthalmol; 1994 Aug; 3(4-5):253-7. PubMed ID: 7804113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive and microinvasive electrical impedance spectra of skin cancer - a comparison between two techniques.
    Aberg P; Geladi P; Nicander I; Hansson J; Holmgren U; Ollmar S
    Skin Res Technol; 2005 Nov; 11(4):281-6. PubMed ID: 16221145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic impedance tomography (EMIT): a new method for impedance imaging.
    Levy S; Adam D; Bresler Y
    IEEE Trans Med Imaging; 2002 Jun; 21(6):676-87. PubMed ID: 12166865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fluorometric estimation of corneal endothelium functions in emmetropic and myopic eyes in pseudophakia].
    Gierek-Lapińska A; Szymański A; Koziak M; Gierek-Kalicka S; Otrzonsek D
    Klin Oczna; 1995; 97(7-8):217-20. PubMed ID: 8531450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term observation of morphologic and functional features of cat corneal endothelium after wounding.
    Bourne WM; Nelson LR; Buller CR; Huang PT; Geroski DH; Edelhauser HF
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):891-9. PubMed ID: 8125752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.