These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20832429)

  • 1. Multi-limb acquisition of motor evoked potentials and its application in spinal cord injury.
    Iyer S; Maybhate A; Presacco A; All AH
    J Neurosci Methods; 2010 Nov; 193(2):210-6. PubMed ID: 20832429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording of spared motor evoked potentials and its augmentation by 4-aminopyridine in chronic spinal cord-injured rats.
    Yu K; Li J; Rong W; Jia L; Yuan W; Ye X; Shi Z; Dai B
    Chin Med J (Engl); 2001 Feb; 114(2):155-61. PubMed ID: 11780197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury].
    Hou Y; Nie L; Liu LH; Shao J; Yuan YJ
    Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(11):773-7. PubMed ID: 18683688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effects of graded spinal cord injuries on transcranial electric stimulation motor evoked potentials in the rat].
    Yu K; Li J; Jia L; Bao J; Yuan W; Ye T; Cui Y
    Zhonghua Wai Ke Za Zhi; 1998 Jul; 36(7):417-20. PubMed ID: 11825429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental research of myogenic motor evoked potentials to transcranial magnetic stimulation for spinal cord monitoring].
    Xie HW; Liu SS; Wu CY; Sha C; Wang DM; Wang CC; Yang YM; Pei A
    Zhonghua Wai Ke Za Zhi; 2004 Jul; 42(13):787-91. PubMed ID: 15363296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low-dose ketamine on voltage requirement for transcranial electrical motor evoked potentials in children.
    Zaarour C; Engelhardt T; Strantzas S; Pehora C; Lewis S; Crawford MW
    Spine (Phila Pa 1976); 2007 Oct; 32(22):E627-30. PubMed ID: 18090070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of early motor and sensory evoked potentials in cervical spinal cord injury.
    Chéliout-Héraut F; Loubert G; Masri-Zada T; Aubrun F; Pasteyer J
    Neurophysiol Clin; 1998 Feb; 28(1):39-55. PubMed ID: 9562998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor evoked potential as a predictor of recovery in chronic spinal cord injury.
    Levy WJ; McCaffrey M; Hagichi S
    Neurosurgery; 1987 Jan; 20(1):138-42. PubMed ID: 3808254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes of motor evoked potentials after spinal cord injuries in rats].
    Yu KW; Ye XJ; Li JS; Rong WF; Ja LS; He HL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2002 Feb; 18(1):14-7. PubMed ID: 21179830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [MEPs by transcranical magnetic stimulation in experimental acute spinal cord injury].
    Kawakita H; Kameyama O; Ogawa R; Tsubura A
    Nihon Seikeigeka Gakkai Zasshi; 1995 Dec; 69(12):1268-77. PubMed ID: 8586912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimate of motor conduction in human spinal cord: slowed conduction in spinal cord injury.
    Chang CW; Lien IN
    Muscle Nerve; 1991 Oct; 14(10):990-6. PubMed ID: 1944412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement of motor evoked potentials in patients with spinal cord injury.
    Hayes KC; Allatt RD; Wolfe DL; Kasai T; Hsieh J
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():312-29. PubMed ID: 1773771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal Evaluation of Residual Cortical and Subcortical Motor Evoked Potentials in Spinal Cord Injured Rats.
    Redondo-Castro E; Navarro X; García-Alías G
    J Neurotrauma; 2016 May; 33(10):907-16. PubMed ID: 26560177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.
    Fujiki M; Kobayashi H; Inoue R; Ishii K
    Exp Neurol; 2004 Jun; 187(2):468-77. PubMed ID: 15144873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial motor-evoked potentials monitoring can detect spinal cord ischemia more rapidly than spinal cord-evoked potentials monitoring during aortic occlusion in rats.
    Kakinohana M; Nakamura S; Fuchigami T; Sugahara K
    Eur Spine J; 2007 Jun; 16(6):787-93. PubMed ID: 16804674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats.
    Huang Z; Li R; Liu J; Huang Z; Hu Y; Wu X; Zhu Q
    Neurosci Lett; 2018 Jan; 664():116-122. PubMed ID: 29138091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncortical origins of the spinal motor evoked potential in rats.
    Zappulla RA; Hollis P; Ryder J; Moore FM; Adamson J; Moustakis W; Malis LI
    Neurosurgery; 1988 May; 22(5):846-52. PubMed ID: 3380273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients.
    Petersen JA; Spiess M; Curt A; Dietz V; Schubert M;
    Neurorehabil Neural Repair; 2012 Oct; 26(8):939-48. PubMed ID: 22460611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injury in the spinal cord may produce cell death in the brain.
    Lee BH; Lee KH; Kim UJ; Yoon DH; Sohn JH; Choi SS; Yi IG; Park YG
    Brain Res; 2004 Sep; 1020(1-2):37-44. PubMed ID: 15312785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.