These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20832507)

  • 1. Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters.
    Han X; Pan J
    Acta Biomater; 2011 Feb; 7(2):538-47. PubMed ID: 20832507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-scale method for modeling degradation of bioresorbable polyesters.
    Zhang T; Zhou S; Gao X; Yang Z; Sun L; Zhang D
    Acta Biomater; 2017 Mar; 50():462-475. PubMed ID: 28017865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis.
    Gleadall A; Pan J; Kruft MA; Kellomäki M
    Acta Biomater; 2014 May; 10(5):2223-32. PubMed ID: 24384126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.
    Pan J; Han X; Niu W; Cameron RE
    Biomaterials; 2011 Mar; 32(9):2248-55. PubMed ID: 21186057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.
    Gleadall A; Pan J; Kruft MA; Kellomäki M
    Acta Biomater; 2014 May; 10(5):2233-40. PubMed ID: 24473239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation.
    Loo JS; Ooi CP; Boey FY
    Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of drug type on the degradation rate of PLGA matrices.
    Siegel SJ; Kahn JB; Metzger K; Winey KI; Werner K; Dan N
    Eur J Pharm Biopharm; 2006 Nov; 64(3):287-93. PubMed ID: 16949804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance.
    Shirazi RN; Aldabbagh F; Ronan W; Erxleben A; Rochev Y; McHugh P
    J Mater Sci Mater Med; 2016 Oct; 27(10):154. PubMed ID: 27590824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.
    Unger F; Wittmar M; Morell F; Kissel T
    Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of hydrophilic drug from biodegradable polymer blends.
    Tan LP; Hidayat A; Lao LL; Quah LF
    J Biomater Sci Polym Ed; 2009; 20(10):1381-92. PubMed ID: 19622278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound degradation of novel polymer contrast agents.
    El-Sherif DM; Lathia JD; Le NT; Wheatley MA
    J Biomed Mater Res A; 2004 Jan; 68(1):71-8. PubMed ID: 14661251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.