These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20832507)

  • 21. The influence of solvent processing on polyester bioabsorbable polymers.
    Manson J; Dixon D
    J Biomater Appl; 2012 Jan; 26(5):623-34. PubMed ID: 20659960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.
    Little H; Themistou E; Clarke SA; Cunningham E; Buchanan F
    J Mater Sci Mater Med; 2017 Dec; 29(1):14. PubMed ID: 29285611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug release from irradiated PLGA and PLLA multi-layered films.
    Loo SC; Tan ZY; Chow YJ; Lin SL
    J Pharm Sci; 2010 Jul; 99(7):3060-71. PubMed ID: 20112427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres.
    Batycky RP; Hanes J; Langer R; Edwards DA
    J Pharm Sci; 1997 Dec; 86(12):1464-77. PubMed ID: 9423163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A reaction-diffusion framework for hydrolytic degradation of amorphous polymers based on a discrete chain scission model.
    Pan Z; Brassart L
    Acta Biomater; 2023 Sep; 167():361-373. PubMed ID: 37343906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paclitaxel release from single and double-layered poly(DL-lactide-co-glycolide)/poly(L-lactide) film for biodegradable coronary stent application.
    Lao LL; Venkatraman SS
    J Biomed Mater Res A; 2008 Oct; 87(1):1-7. PubMed ID: 18080309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why degradable polymers undergo surface erosion or bulk erosion.
    von Burkersroda F; Schedl L; Göpferich A
    Biomaterials; 2002 Nov; 23(21):4221-31. PubMed ID: 12194525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers.
    Jackson JK; Hung T; Letchford K; Burt HM
    Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards developing surface eroding poly(alpha-hydroxy acids).
    Xu XJ; Sy JC; Prasad Shastri V
    Biomaterials; 2006 May; 27(15):3021-30. PubMed ID: 16455136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simplex lattice design for the optimization of the microencapsulation of a water soluble drug using poly(lactic acid) and poly(lactide co-glycolide) copolymer.
    Elkheshen S
    J Microencapsul; 1996; 13(4):447-62. PubMed ID: 8808781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Wee SH; Boey YC
    Biomaterials; 2005 Jun; 26(16):2827-33. PubMed ID: 15603778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting.
    Fahmy TM; Samstein RM; Harness CC; Mark Saltzman W
    Biomaterials; 2005 Oct; 26(28):5727-36. PubMed ID: 15878378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
    Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T
    J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface characterization of poly(lactic acid)/everolimus and poly(ethylene vinyl alcohol)/everolimus stents.
    Wu M; Kleiner L; Tang FW; Hossainy S; Davies MC; Roberts CJ
    Drug Deliv; 2010 Aug; 17(6):376-84. PubMed ID: 20373889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer.
    Dumitru AC; Espinosa FM; Garcia R; Foschi G; Tortorella S; Valle F; Dallavalle M; Zerbetto F; Biscarini F
    Nanoscale; 2015 Mar; 7(12):5403-10. PubMed ID: 25727249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D,L-lactic-co-glycolic acid) microspheres: morphological effect on protein release.
    Kim HK; Park TG
    J Control Release; 2004 Jul; 98(1):115-25. PubMed ID: 15245894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)].
    Wei Z; Liu L; Zhang M; Yang F; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):122-6. PubMed ID: 18435272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.