These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Uriot O; Galia W; Awussi AA; Perrin C; Denis S; Chalancon S; Lorson E; Poirson C; Junjua M; Le Roux Y; Alric M; Dary A; Blanquet-Diot S; Roussel Y Food Microbiol; 2016 Feb; 53(Pt A):18-29. PubMed ID: 26611166 [TBL] [Abstract][Full Text] [Related]
24. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Kort R; Westerik N; Mariela Serrano L; Douillard FP; Gottstein W; Mukisa IM; Tuijn CJ; Basten L; Hafkamp B; Meijer WC; Teusink B; de Vos WM; Reid G; Sybesma W Microb Cell Fact; 2015 Dec; 14():195. PubMed ID: 26643044 [TBL] [Abstract][Full Text] [Related]
25. Mild heat stress limited the post-acidification caused by Lactobacillus rhamnosus hsryfm 1301 in fermented milk. Zhang C; Yang L; Gu R; Ding Z; Guan C; Lu M; Gu R Biotechnol Lett; 2019 May; 41(4-5):633-639. PubMed ID: 30929103 [TBL] [Abstract][Full Text] [Related]
26. Influence of passion fruit by-product and fructooligosaccharides on the viability of Streptococcus thermophilus TH-4 and Lactobacillus rhamnosus LGG in folate bio-enriched fermented soy products and their effect on probiotic survival and folate bio-accessibility under in vitro simulated gastrointestinal conditions. Albuquerque MAC; Yamacita DS; Bedani R; LeBlanc JG; Saad SMI Int J Food Microbiol; 2019 Mar; 292():126-136. PubMed ID: 30597427 [TBL] [Abstract][Full Text] [Related]
27. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Pereira-Caro G; Fernández-Quirós B; Ludwig IA; Pradas I; Crozier A; Moreno-Rojas JM Eur J Nutr; 2018 Feb; 57(1):231-242. PubMed ID: 27722779 [TBL] [Abstract][Full Text] [Related]
28. The growth and recovery of an exopolysaccharide-producing Lactobacillus rhamnosus culture on growth media containing apple juice or molasses. Champagne CP; Gardner NJ J Gen Appl Microbiol; 2008 Aug; 54(4):237-41. PubMed ID: 18802323 [No Abstract] [Full Text] [Related]
29. Microencapsulation of new probiotic formulations for gastrointestinal delivery: in vitro study to assess viability and biological properties. D'Orazio G; Di Gennaro P; Boccarusso M; Presti I; Bizzaro G; Giardina S; Michelotti A; Labra M; La Ferla B Appl Microbiol Biotechnol; 2015 Nov; 99(22):9779-89. PubMed ID: 26239070 [TBL] [Abstract][Full Text] [Related]
30. Selection of New Probiotics for Endometrial Health. Chenoll E; Moreno I; Sánchez M; Garcia-Grau I; Silva Á; González-Monfort M; Genovés S; Vilella F; Seco-Durban C; Simón C; Ramón D Front Cell Infect Microbiol; 2019; 9():114. PubMed ID: 31058101 [TBL] [Abstract][Full Text] [Related]
31. Survival of potential probiotic lactobacilli used as adjunct cultures on Pecorino Siciliano cheese ripening and passage through the gastrointestinal tract of healthy volunteers. Pino A; Van Hoorde K; Pitino I; Russo N; Carpino S; Caggia C; Randazzo CL Int J Food Microbiol; 2017 Jul; 252():42-52. PubMed ID: 28458191 [TBL] [Abstract][Full Text] [Related]
32. Microencapsulation increases survival of the probiotic Lactobacillus plantarum IS-10506, but not Enterococcus faecium IS-27526 in a dynamic, computer-controlled in vitro model of the upper gastrointestinal tract. Surono I; Verhoeven J; Verbruggen S; Venema K J Appl Microbiol; 2018 Jun; 124(6):1604-1609. PubMed ID: 29473976 [TBL] [Abstract][Full Text] [Related]
33. Competitive inhibition of three novel bacteria isolated from faeces of breast milk-fed infants against selected enteropathogens. Muñoz-Quezada S; Bermudez-Brito M; Chenoll E; Genovés S; Gomez-Llorente C; Plaza-Diaz J; Matencio E; Bernal MJ; Romero F; Ramón D; Gil A Br J Nutr; 2013 Jan; 109 Suppl 2():S63-9. PubMed ID: 23360882 [TBL] [Abstract][Full Text] [Related]
34. Survival of lactic acid bacteria from fermented milks in an in vitro digestion model exploiting sequential incubation in human gastric and duodenum juice. Faye T; Tamburello A; Vegarud GE; Skeie S J Dairy Sci; 2012 Feb; 95(2):558-66. PubMed ID: 22281320 [TBL] [Abstract][Full Text] [Related]
35. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS). Koh JH; Choi SH; Park SW; Choi NJ; Kim Y; Kim SH Food Microbiol; 2013 Oct; 36(1):7-13. PubMed ID: 23764214 [TBL] [Abstract][Full Text] [Related]
36. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus. Nancib A; Nancib N; Boubendir A; Boudrant J Braz J Microbiol; 2015; 46(3):893-902. PubMed ID: 26413076 [TBL] [Abstract][Full Text] [Related]
37. Use of imaging techniques to identify efficient controlled release systems of Lactobacillus rhamnosus GG during in vitro digestion. Guerin J; Burgain J; Borges F; Bhandari B; Desobry S; Scher J; Gaiani C Food Funct; 2017 Apr; 8(4):1587-1598. PubMed ID: 28287654 [TBL] [Abstract][Full Text] [Related]
38. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage. Jofré A; Aymerich T; Garriga M Benef Microbes; 2015; 6(3):381-6. PubMed ID: 25380798 [TBL] [Abstract][Full Text] [Related]
39. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. Yang Z; Li S; Zhang X; Zeng X; Li D; Zhao Y; Zhang J J Biosci Bioeng; 2010 Jul; 110(1):53-7. PubMed ID: 20541116 [TBL] [Abstract][Full Text] [Related]
40. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Nowak A; Kuberski S; Libudzisz Z Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(10):1678-87. PubMed ID: 25010287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]