BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20832778)

  • 21. In situ generation of Fmoc-amino acid chlorides using bis-(trichloromethyl) carbonate and its utilization for difficult couplings in solid-phase peptide synthesis.
    Falb E; Yechezkel T; Salitra Y; Gilon C
    J Pept Res; 1999 May; 53(5):507-17. PubMed ID: 10424345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).
    Vanier GS
    Methods Mol Biol; 2013; 1047():235-49. PubMed ID: 23943491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids.
    Bojarska J; Remko M; Madura ID; Kaczmarek K; Zabrocki J; Wolf WM
    Acta Crystallogr C Struct Chem; 2020 Apr; 76(Pt 4):328-345. PubMed ID: 32229714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Fmoc-Protected Bis-Amino Acids toward Automated Synthesis of Highly Functionalized Spiroligomers.
    Xie Y; Luo D; Wiener J; Tang S; Chepyshev S; Schafmeister C
    Org Lett; 2022 May; 24(18):3421-3425. PubMed ID: 35499925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isocyanates of N alpha-[(9-fluorenylmethyl)oxy]carbonyl amino acids: synthesis, isolation, characterization, and application to the efficient synthesis of urea peptidomimetics.
    Patil BS; Vasanthakumar GR; Suresh Babu VV
    J Org Chem; 2003 Sep; 68(19):7274-80. PubMed ID: 12968876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A one-pot procedure for the preparation of N-9-fluorenylmethyloxycarbonyl-α-amino diazoketones from α-amino acids.
    Siciliano C; De Marco R; Guidi LE; Spinella M; Liguori A
    J Org Chem; 2012 Dec; 77(23):10575-82. PubMed ID: 23146162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extensively stereodiversified scaffolds for use in diversity-oriented library synthesis.
    Gierasch TM; Shi Z; Verdine GL
    Org Lett; 2003 Mar; 5(5):621-4. PubMed ID: 12605474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unified strategy for the synthesis of mucin cores 1-4 saccharides and the assembled multivalent glycopeptides.
    Pett C; Schorlemer M; Westerlind U
    Chemistry; 2013 Dec; 19(50):17001-10. PubMed ID: 24307362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines.
    Schaffert D; Badgujar N; Wagner E
    Org Lett; 2011 Apr; 13(7):1586-9. PubMed ID: 21375314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the synthetic route to pepstatin analogues by SPPS using O-protected and O-unprotected statine as building blocks.
    Cadicamo CD; Asante V; Abu Ammar M; Borelli C; Korting HC; Koksch B
    J Pept Sci; 2009 Apr; 15(4):272-7. PubMed ID: 19189272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid microwave-assisted solid-phase glycopeptide synthesis.
    Matsushita T; Hinou H; Kurogochi M; Shimizu H; Nishimura S
    Org Lett; 2005 Mar; 7(5):877-80. PubMed ID: 15727464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilized glycosylated Fmoc-amino acid for SPR: comparative studies of lectin-binding to linear or biantennary diLacNAc structures.
    Nakamura K; Sakagami H; Asanuma-Date K; Nagasawa N; Nakahara Y; Akiyama H; Ogawa H
    Carbohydr Res; 2013 Dec; 382():77-85. PubMed ID: 24211369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-phase synthesis of "mixed" peptidomimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids.
    Busnel O; Bi L; Dali H; Cheguillaume A; Chevance S; Bondon A; Muller S; Baudy-Floc'h M
    J Org Chem; 2005 Dec; 70(26):10701-8. PubMed ID: 16355988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and synthesis of Fmoc-Thr[PO(OH)(OPOM)] for the preparation of peptide prodrugs containing phosphothreonine in fully protected form.
    Qian WJ; Lai CC; Kelley JA; Burke TR
    Chem Biodivers; 2014 May; 11(5):784-91. PubMed ID: 24827688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient protocol for the solid-phase synthesis of glycopeptides under microwave irradiation.
    Garcia-Martin F; Hinou H; Matsushita T; Hayakawa S; Nishimura S
    Org Biomol Chem; 2012 Feb; 10(8):1612-7. PubMed ID: 22234499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel deprotection method of Fmoc group under neutral hydrogenation conditions.
    Maegawa T; Fujiwara Y; Ikawa T; Hisashi H; Monguchi Y; Sajiki H
    Amino Acids; 2009 Mar; 36(3):493-9. PubMed ID: 18504523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chiral auxiliary based approach toward the synthesis of C-glycosylated amino acids.
    Westermann B; Walter A; Flörke U; Altenbach HJ
    Org Lett; 2001 May; 3(9):1375-8. PubMed ID: 11348238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of novel fluorogenic L-Fmoc lysine derivatives as potential tools for imaging cells.
    Berthelot T; Laïn G; Latxague L; Déleris G
    J Fluoresc; 2004 Nov; 14(6):671-5. PubMed ID: 15649018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy. III: racemization studies and water-based synthesis of histidine-containing peptides.
    Hojo K; Shinozaki N; Hidaka K; Tsuda Y; Fukumori Y; Ichikawa H; Wade JD
    Amino Acids; 2014 Oct; 46(10):2347-54. PubMed ID: 24965528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.