BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 20833374)

  • 21. The role of pattern recognition receptors in the innate recognition of Candida albicans.
    Zheng NX; Wang Y; Hu DD; Yan L; Jiang YY
    Virulence; 2015; 6(4):347-61. PubMed ID: 25714264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans β-Glucan-Containing Particles Increase HO-1 Expression in Oral Keratinocytes via a Reactive Oxygen Species/p38 Mitogen-Activated Protein Kinase/Nrf2 Pathway.
    Ishida Y; Ohta K; Naruse T; Kato H; Fukui A; Shigeishi H; Nishi H; Tobiume K; Takechi M
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29311246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Commensal fungi and their cell-wall β-glucans direct differential responses in human intestinal epithelial cells.
    Cohen-Kedar S; Keizer D; Schwartz S; Rabinowitz KM; Kaboub K; Shaham Barda E; Sadot E; Wolff-Bar M; Shaltiel T; Dotan I
    Eur J Immunol; 2021 Apr; 51(4):864-878. PubMed ID: 33616974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].
    Aydın C; Ataoğlu H
    Mikrobiyol Bul; 2015 Jan; 49(1):66-76. PubMed ID: 25706732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1.
    Böhringer M; Pohlers S; Schulze S; Albrecht-Eckardt D; Piegsa J; Weber M; Martin R; Hünniger K; Linde J; Guthke R; Kurzai O
    Cell Microbiol; 2016 Jul; 18(7):889-904. PubMed ID: 26752615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Invasive phenotype of Candida albicans affects the host proinflammatory response to infection.
    Villar CC; Kashleva H; Mitchell AP; Dongari-Bagtzoglou A
    Infect Immun; 2005 Aug; 73(8):4588-95. PubMed ID: 16040970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistence of
    Kirchner FR; Littringer K; Altmeier S; Tran VDT; Schönherr F; Lemberg C; Pagni M; Sanglard D; Joller N; LeibundGut-Landmann S
    Front Immunol; 2019; 10():330. PubMed ID: 30873177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A highly conserved tRNA modification contributes to
    Böttcher B; Kienast SD; Leufken J; Eggers C; Sharma P; Leufken CM; Morgner B; Drexler HCA; Schulz D; Allert S; Jacobsen ID; Vylkova S; Leidel SA; Brunke S
    Microbiol Spectr; 2024 May; 12(5):e0425522. PubMed ID: 38587411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Candida innate immunity at the mucosa.
    Richardson JP; Moyes DL; Ho J; Naglik JR
    Semin Cell Dev Biol; 2019 May; 89():58-70. PubMed ID: 29501618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IL-1α released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response.
    Hanaoka M; Domae E
    Int Immunol; 2021 Mar; 33(3):161-170. PubMed ID: 33038250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epithelial cells and innate antifungal defense.
    Weindl G; Wagener J; Schaller M
    J Dent Res; 2010 Jul; 89(7):666-75. PubMed ID: 20395411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions.
    Nobile CJ; Solis N; Myers CL; Fay AJ; Deneault JS; Nantel A; Mitchell AP; Filler SG
    Cell Microbiol; 2008 Nov; 10(11):2180-96. PubMed ID: 18627379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling.
    Weindl G; Naglik JR; Kaesler S; Biedermann T; Hube B; Korting HC; Schaller M
    J Clin Invest; 2007 Dec; 117(12):3664-72. PubMed ID: 17992260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.
    Uwamahoro N; Verma-Gaur J; Shen HH; Qu Y; Lewis R; Lu J; Bambery K; Masters SL; Vince JE; Naderer T; Traven A
    mBio; 2014 Mar; 5(2):e00003-14. PubMed ID: 24667705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis.
    Csank C; Schröppel K; Leberer E; Harcus D; Mohamed O; Meloche S; Thomas DY; Whiteway M
    Infect Immun; 1998 Jun; 66(6):2713-21. PubMed ID: 9596738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis.
    Chiang LY; Sheppard DC; Bruno VM; Mitchell AP; Edwards JE; Filler SG
    Cell Microbiol; 2007 Jan; 9(1):233-45. PubMed ID: 16939537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. B Cell Recognition of
    Ferreira-Gomes M; Wich M; Böde S; Hube B; Jacobsen ID; Jungnickel B
    Front Immunol; 2021; 12():698849. PubMed ID: 34819929
    [No Abstract]   [Full Text] [Related]  

  • 38. Candida albicans Interaction with Oral Epithelial Cells: Adhesion , Invasion, and Damage Assays.
    Mogavero S; Hube B
    Methods Mol Biol; 2021; 2260():133-143. PubMed ID: 33405035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different Host Immunological Response to C. albicans by Human Oral and Vaginal Epithelial Cells.
    Gao Y; Liang G; Wang Q; She X; Shi D; Shen Y; Su X; Wang X; Wang W; Li D; Liu W
    Mycopathologia; 2019 Feb; 184(1):1-12. PubMed ID: 30600418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro analyses of tissue structure and interleukin-1beta expression and production by human oral mucosa in response to Candida albicans infections.
    Mostefaoui Y; Claveau I; Rouabhia M
    Cytokine; 2004 Feb; 25(4):162-71. PubMed ID: 15162833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.