These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20833628)

  • 21. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Chen M; Ni M
    Plant J; 2006 Jun; 46(5):823-33. PubMed ID: 16709197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shining a light on the Arabidopsis circadian clock.
    Oakenfull RJ; Davis SJ
    Plant Cell Environ; 2017 Nov; 40(11):2571-2585. PubMed ID: 28732105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod.
    Chen A; Li C; Hu W; Lau MY; Lin H; Rockwell NC; Martin SS; Jernstedt JA; Lagarias JC; Dubcovsky J
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10037-44. PubMed ID: 24961368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of photoperiodic control pathways produces short-day flowering in rice.
    Hayama R; Yokoi S; Tamaki S; Yano M; Shimamoto K
    Nature; 2003 Apr; 422(6933):719-22. PubMed ID: 12700762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana.
    Mizuno T; Nomoto Y; Oka H; Kitayama M; Takeuchi A; Tsubouchi M; Yamashino T
    Plant Cell Physiol; 2014 May; 55(5):958-76. PubMed ID: 24500967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana.
    Kumagai T; Ito S; Nakamichi N; Niwa Y; Murakami M; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2008 Jun; 72(6):1539-49. PubMed ID: 18540109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice.
    Yang Y; Peng Q; Chen GX; Li XH; Wu CY
    Mol Plant; 2013 Jan; 6(1):202-15. PubMed ID: 22888152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of flowering time by light quality.
    Cerdán PD; Chory J
    Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.
    Kawamura M; Ito S; Nakamichi N; Yamashino T; Mizuno T
    Biosci Biotechnol Biochem; 2008 May; 72(5):1307-16. PubMed ID: 18460819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of photoperiodic flowering time control in Arabidopsis and barley.
    Steffen A; Fischer A; Staiger D
    Methods Mol Biol; 2014; 1158():285-95. PubMed ID: 24792059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Balancing forces in the photoperiodic control of flowering.
    Sanchez SE; Cagnola JI; Crepy M; Yanovsky MJ; Casal JJ
    Photochem Photobiol Sci; 2011 Apr; 10(4):451-60. PubMed ID: 21125113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The circadian clock-associated gene gigantea1 affects maize developmental transitions.
    Bendix C; Mendoza JM; Stanley DN; Meeley R; Harmon FG
    Plant Cell Environ; 2013 Jul; 36(7):1379-90. PubMed ID: 23336247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana.
    Fujimori T; Yamashino T; Kato T; Mizuno T
    Plant Cell Physiol; 2004 Aug; 45(8):1078-86. PubMed ID: 15356333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similarities in the circadian clock and photoperiodism in plants.
    Song YH; Ito S; Imaizumi T
    Curr Opin Plant Biol; 2010 Oct; 13(5):594-603. PubMed ID: 20620097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa.
    Murakami M; Tago Y; Yamashino T; Mizuno T
    Plant Cell Physiol; 2007 Jan; 48(1):110-21. PubMed ID: 17132630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of light-to-dark transitions on phase setting in circadian expression among clock-controlled genes in Pharbitis nil.
    Hayama R; Mizoguchi T; Coupland G
    Plant Signal Behav; 2018; 13(6):e1473686. PubMed ID: 29944436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis.
    Huang WY; Wu YC; Pu HY; Wang Y; Jang GJ; Wu SH
    Plant Cell Environ; 2017 Sep; 40(9):1735-1747. PubMed ID: 28437590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.