BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20833715)

  • 1. Structure of dimeric F1F0-ATP synthase.
    Couoh-Cardel SJ; Uribe-Carvajal S; Wilkens S; García-Trejo JJ
    J Biol Chem; 2010 Nov; 285(47):36447-55. PubMed ID: 20833715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis.
    Minauro-Sanmiguel F; Wilkens S; García JJ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12356-8. PubMed ID: 16105947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes.
    Spikes TE; Montgomery MG; Walker JE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33542155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria.
    Dudkina NV; Sunderhaus S; Braun HP; Boekema EJ
    FEBS Lett; 2006 Jun; 580(14):3427-32. PubMed ID: 16714019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane.
    Dudkina NV; Heinemeyer J; Keegstra W; Boekema EJ; Braun HP
    FEBS Lett; 2005 Oct; 579(25):5769-72. PubMed ID: 16223490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology.
    Hahn A; Parey K; Bublitz M; Mills DJ; Zickermann V; Vonck J; Kühlbrandt W; Meier T
    Mol Cell; 2016 Aug; 63(3):445-56. PubMed ID: 27373333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The peripheral stalk participates in the yeast ATP synthase dimerization independently of e and g subunits.
    Fronzes R; Weimann T; Vaillier J; Velours J; Brèthes D
    Biochemistry; 2006 May; 45(21):6715-23. PubMed ID: 16716082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of subunit e of the F1Fo-ATP synthase of the yeast Saccharomyces cerevisiae: importance of the N-terminal membrane anchor region.
    Everard-Gigot V; Dunn CD; Dolan BM; Brunner S; Jensen RE; Stuart RA
    Eukaryot Cell; 2005 Feb; 4(2):346-55. PubMed ID: 15701797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular organization of the yeast F1Fo-ATP synthase.
    Thomas D; Bron P; Weimann T; Dautant A; Giraud MF; Paumard P; Salin B; Cavalier A; Velours J; Brèthes D
    Biol Cell; 2008 Oct; 100(10):591-601. PubMed ID: 18447829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic model for the dimeric F
    Guo H; Bueler SA; Rubinstein JL
    Science; 2017 Nov; 358(6365):936-940. PubMed ID: 29074581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATP synthase is involved in generating mitochondrial cristae morphology.
    Paumard P; Vaillier J; Coulary B; Schaeffer J; Soubannier V; Mueller DM; Brèthes D; di Rago JP; Velours J
    EMBO J; 2002 Feb; 21(3):221-30. PubMed ID: 11823415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology.
    Habersetzer J; Ziani W; Larrieu I; Stines-Chaumeil C; Giraud MF; Brèthes D; Dautant A; Paumard P
    Int J Biochem Cell Biol; 2013 Jan; 45(1):99-105. PubMed ID: 22664329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural organization of mitochondrial ATP synthase.
    Wittig I; Schägger H
    Biochim Biophys Acta; 2008; 1777(7-8):592-8. PubMed ID: 18485888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial F1F0-ATP synthase and organellar internal architecture.
    Velours J; Dautant A; Salin B; Sagot I; Brèthes D
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1783-9. PubMed ID: 19703649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the dimeric ATP synthase from bovine mitochondria.
    Spikes TE; Montgomery MG; Walker JE
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23519-23526. PubMed ID: 32900941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of domain interfaces in monomeric and dimeric ATP synthase.
    Wittig I; Velours J; Stuart R; Schägger H
    Mol Cell Proteomics; 2008 May; 7(5):995-1004. PubMed ID: 18245802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes.
    Bornhövd C; Vogel F; Neupert W; Reichert AS
    J Biol Chem; 2006 May; 281(20):13990-8. PubMed ID: 16551625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane.
    Arselin G; Giraud MF; Dautant A; Vaillier J; Brèthes D; Coulary-Salin B; Schaeffer J; Velours J
    Eur J Biochem; 2003 Apr; 270(8):1875-84. PubMed ID: 12694201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible assembly of the ATP-binding cassette transporter Mdl1 with the F1F0-ATP synthase in mitochondria.
    Galluhn D; Langer T
    J Biol Chem; 2004 Sep; 279(37):38338-45. PubMed ID: 15247210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits.
    Arnold I; Pfeiffer K; Neupert W; Stuart RA; Schägger H
    EMBO J; 1998 Dec; 17(24):7170-8. PubMed ID: 9857174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.