These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 20833894)
1. Recognition of yeast by murine macrophages requires mannan but not glucan. Keppler-Ross S; Douglas L; Konopka JB; Dean N Eukaryot Cell; 2010 Nov; 9(11):1776-87. PubMed ID: 20833894 [TBL] [Abstract][Full Text] [Related]
2. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. McKenzie CG; Koser U; Lewis LE; Bain JM; Mora-Montes HM; Barker RN; Gow NA; Erwig LP Infect Immun; 2010 Apr; 78(4):1650-8. PubMed ID: 20123707 [TBL] [Abstract][Full Text] [Related]
4. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies]. Aydın C; Ataoğlu H Mikrobiyol Bul; 2015 Jan; 49(1):66-76. PubMed ID: 25706732 [TBL] [Abstract][Full Text] [Related]
5. Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages. Józefowski S; Yang Z; Marcinkiewicz J; Kobzik L Inflamm Res; 2012 Feb; 61(2):113-26. PubMed ID: 22116297 [TBL] [Abstract][Full Text] [Related]
6. The effects of soluble Saccharomyces cerevisiae mannan on the phagocytosis of Candida albicans by mouse peritoneal macrophages in vitro. Kolotila MP; Rogers AL; Beneke ES; Smith CW J Med Vet Mycol; 1987 Apr; 25(2):85-96. PubMed ID: 3298606 [TBL] [Abstract][Full Text] [Related]
7. Anti-Saccharomyces cerevisiae mannan antibodies (ASCA) of Crohn's patients crossreact with mannan from other yeast strains, and murine ASCA IgM can be experimentally induced with Candida albicans. Schaffer T; Müller S; Flogerzi B; Seibold-Schmid B; Schoepfer AM; Seibold F Inflamm Bowel Dis; 2007 Nov; 13(11):1339-46. PubMed ID: 17636567 [TBL] [Abstract][Full Text] [Related]
8. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. Lowman DW; Greene RR; Bearden DW; Kruppa MD; Pottier M; Monteiro MA; Soldatov DV; Ensley HE; Cheng SC; Netea MG; Williams DL J Biol Chem; 2014 Feb; 289(6):3432-43. PubMed ID: 24344127 [TBL] [Abstract][Full Text] [Related]
9. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. Lewis LE; Bain JM; Lowes C; Gillespie C; Rudkin FM; Gow NA; Erwig LP PLoS Pathog; 2012; 8(3):e1002578. PubMed ID: 22438806 [TBL] [Abstract][Full Text] [Related]
10. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. Uwamahoro N; Verma-Gaur J; Shen HH; Qu Y; Lewis R; Lu J; Bambery K; Masters SL; Vince JE; Naderer T; Traven A mBio; 2014 Mar; 5(2):e00003-14. PubMed ID: 24667705 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of the beta-glucan receptor of murine macrophages. Goldman R Exp Cell Res; 1988 Feb; 174(2):481-90. PubMed ID: 2828085 [TBL] [Abstract][Full Text] [Related]
12. Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Wellington M; Dolan K; Krysan DJ Infect Immun; 2009 Jan; 77(1):405-13. PubMed ID: 18981256 [TBL] [Abstract][Full Text] [Related]
13. Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Kasperkovitz PV; Khan NS; Tam JM; Mansour MK; Davids PJ; Vyas JM Infect Immun; 2011 Dec; 79(12):4858-67. PubMed ID: 21947771 [TBL] [Abstract][Full Text] [Related]
14. Candida albicans morphogenesis is not required for macrophage interleukin 1β production. Wellington M; Koselny K; Krysan DJ mBio; 2012 Dec; 4(1):e00433-12. PubMed ID: 23269828 [TBL] [Abstract][Full Text] [Related]
15. Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host-pathogen interaction. Okai B; Lyall N; Gow NA; Bain JM; Erwig LP Infect Immun; 2015 Apr; 83(4):1523-35. PubMed ID: 25644001 [TBL] [Abstract][Full Text] [Related]
16. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present. Rudkin FM; Bain JM; Walls C; Lewis LE; Gow NA; Erwig LP mBio; 2013 Oct; 4(6):e00810-13. PubMed ID: 24169578 [TBL] [Abstract][Full Text] [Related]
17. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. Miranda I; Silva-Dias A; Rocha R; Teixeira-Santos R; Coelho C; Gonçalves T; Santos MA; Pina-Vaz C; Solis NV; Filler SG; Rodrigues AG mBio; 2013 Aug; 4(4):. PubMed ID: 23800396 [TBL] [Abstract][Full Text] [Related]
18. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes. Dementhon K; El-Kirat-Chatel S; Noël T PLoS One; 2012; 7(3):e32621. PubMed ID: 22479332 [TBL] [Abstract][Full Text] [Related]
19. Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. Zhang SQ; Zou Z; Shen H; Shen SS; Miao Q; Huang X; Liu W; Li LP; Chen SM; Yan L; Zhang JD; Zhao JJ; Xu GT; An MM; Jiang YY PLoS Pathog; 2016 May; 12(5):e1005617. PubMed ID: 27144456 [TBL] [Abstract][Full Text] [Related]
20. Dectin-1 escape by fungal dimorphism. Heinsbroek SE; Brown GD; Gordon S Trends Immunol; 2005 Jul; 26(7):352-4. PubMed ID: 15922664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]