These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 20835235)

  • 1. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.
    Takei K; Takahashi T; Ho JC; Ko H; Gillies AG; Leu PW; Fearing RS; Javey A
    Nat Mater; 2010 Oct; 9(10):821-6. PubMed ID: 20835235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry.
    Fan Z; Ho JC; Jacobson ZA; Razavi H; Javey A
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11066-70. PubMed ID: 18685094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale integration of semiconductor nanowires for high-performance flexible electronics.
    Liu X; Long YZ; Liao L; Duan X; Fan Z
    ACS Nano; 2012 Mar; 6(3):1888-900. PubMed ID: 22364279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing.
    Fan Z; Ho JC; Jacobson ZA; Yerushalmi R; Alley RL; Razavi H; Javey A
    Nano Lett; 2008 Jan; 8(1):20-5. PubMed ID: 17696563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.
    Nela L; Tang J; Cao Q; Tulevski G; Han SJ
    Nano Lett; 2018 Mar; 18(3):2054-2059. PubMed ID: 29442518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale semiconductor "X" on substrate "Y"--processes, devices, and applications.
    Madsen M; Takei K; Kapadia R; Fang H; Ko H; Takahashi T; Ford AC; Lee MH; Javey A
    Adv Mater; 2011 Jul; 23(28):3115-27. PubMed ID: 21661066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications.
    Someya T; Sekitani T; Iba S; Kato Y; Kawaguchi H; Sakurai T
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):9966-70. PubMed ID: 15226508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors.
    Wu Y; Zhang X; Pan H; Deng W; Zhang X; Zhang X; Jie J
    Sci Rep; 2013 Nov; 3():3248. PubMed ID: 24287887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.
    Wang J; Jiu J; Nogi M; Sugahara T; Nagao S; Koga H; He P; Suganuma K
    Nanoscale; 2015 Feb; 7(7):2926-32. PubMed ID: 25588044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates.
    Starko-Bowes R; Pramanik S
    J Vis Exp; 2013 Jun; (76):. PubMed ID: 23852129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging.
    Wu W; Wen X; Wang ZL
    Science; 2013 May; 340(6135):952-7. PubMed ID: 23618761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.
    Hwang SK; Min SY; Bae I; Cho SM; Kim KL; Lee TW; Park C
    Small; 2014 May; 10(10):1976-84. PubMed ID: 24644019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable direct-printing nanowire electronic components.
    Lee TI; Choi WJ; Moon KJ; Choi JH; Kar JP; Das SN; Kim YS; Baik HK; Myoung JM
    Nano Lett; 2010 Mar; 10(3):1016-21. PubMed ID: 20108927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces.
    Han HJ; Jeong JW; Yang SR; Kim C; Yoo HG; Yoon JB; Park JH; Lee KJ; Kim TS; Kim SW; Jung YS
    ACS Nano; 2017 Nov; 11(11):11642-11652. PubMed ID: 29131582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-integration of nanowires into circuits via guided growth.
    Schvartzman M; Tsivion D; Mahalu D; Raslin O; Joselevich E
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15195-200. PubMed ID: 23904485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct gravure printing of silicon nanowires using entropic attraction forces.
    Seo J; Lee H; Lee S; Lee TI; Myoung JM; Lee T
    Small; 2012 May; 8(10):1614-21. PubMed ID: 22431282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.
    Han N; Yang ZX; Wang F; Yip S; Li D; Hung TF; Chen Y; Ho JC
    ACS Nano; 2016 Jun; 10(6):6283-90. PubMed ID: 27223050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica Nanowires: Growth, Integration, and Sensing Applications.
    Kaushik A; Kumar R; Huey E; Bhansali S; Nair N; Nanir M
    Mikrochim Acta; 2014 Nov; 181(15-16):1759-1780. PubMed ID: 25382871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.