These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20835381)
1. Semi-Empirical Topological Method for Prediction of the Relative Retention Time of Polychlorinated Biphenyl Congeners on 18 Different HR GC Columns. Ghavami R; Mohammad Sajadi S Chromatographia; 2010 Sep; 72(5-6):523-533. PubMed ID: 20835381 [TBL] [Abstract][Full Text] [Related]
2. QSRR Models for Kováts' Retention Indices of a Variety of Volatile Organic Compounds on Polar and Apolar GC Stationary Phases Using Molecular Connectivity Indexes. Ghavami R; Faham S Chromatographia; 2010 Nov; 72(9-10):893-903. PubMed ID: 21088689 [TBL] [Abstract][Full Text] [Related]
3. Investigation of retention behavior of polychlorinated biphenyl congeners on 18 different HRGC columns using molecular surface average local ionization energy descriptors. Ghavami R; Sepehri B J Chromatogr A; 2012 Apr; 1233():116-25. PubMed ID: 22386058 [TBL] [Abstract][Full Text] [Related]
4. Semi-empirical topological method for prediction of the gas chromatographic relative retention times of polybrominated diphenyl ethers (PBDEs). Liu HY; Liu SS; Qin LT J Mol Model; 2007 May; 13(5):611-27. PubMed ID: 17390156 [TBL] [Abstract][Full Text] [Related]
5. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks. D'Archivio AA; Incani A; Ruggieri F J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780 [TBL] [Abstract][Full Text] [Related]
6. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases. Biancolillo A; D'Archivio AA J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535 [TBL] [Abstract][Full Text] [Related]
7. Prediction of chromatographic relative retention time of polychlorinated biphenyls from the molecular electronegativity distance vector. Liu SS; Liu Y; Yin DQ; Wang XD; Wang LS J Sep Sci; 2006 Feb; 29(2):296-301. PubMed ID: 16524106 [TBL] [Abstract][Full Text] [Related]
8. Predicting gas chromatography relative retention times for polychlorinated biphenyls using chlorine substitution pattern contribution method. Li A; Gao J; Freels S; Huang J; Yu G J Chromatogr A; 2016 Jan; 1427():161-9. PubMed ID: 26709020 [TBL] [Abstract][Full Text] [Related]
9. Predicting gas chromatographic retention times for the 209 polybrominated diphenyl ether congeners. Rayne S; Ikonomou MG J Chromatogr A; 2003 Oct; 1016(2):235-48. PubMed ID: 14601842 [TBL] [Abstract][Full Text] [Related]
10. Potential of topological descriptors to model the retention of polychlorinated biphenyls in different gas chromatography stationary phases, including ionic liquid-based columns. Escobar-Arnanz J; Sanz ML; Ros M; Sanz J; Ramos L J Chromatogr A; 2020 Apr; 1616():460844. PubMed ID: 31952814 [TBL] [Abstract][Full Text] [Related]
11. An accurate QSRR model for the prediction of the GCxGC-TOFMS retention time of polychlorinated biphenyl (PCB) congeners. Ren Y; Liu H; Yao X; Liu M Anal Bioanal Chem; 2007 May; 388(1):165-72. PubMed ID: 17342539 [TBL] [Abstract][Full Text] [Related]
12. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Wang Y; Li A; Liu H; Zhang Q; Ma W; Song W; Jiang G J Chromatogr A; 2006 Jan; 1103(2):314-28. PubMed ID: 16352309 [TBL] [Abstract][Full Text] [Related]
13. Development of a multiple-class high-resolution gas chromatographic relative retention time model for halogenated environmental contaminants. Rayne S; Ikonomou MG Anal Chem; 2003 Mar; 75(5):1049-57. PubMed ID: 12641222 [TBL] [Abstract][Full Text] [Related]
14. Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers. D'Archivio AA; Giannitto A; Maggi MA J Chromatogr A; 2013 Jul; 1298():118-31. PubMed ID: 23726355 [TBL] [Abstract][Full Text] [Related]
15. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585 [TBL] [Abstract][Full Text] [Related]
16. [Quantitative structure-retention relationship (QSRR) studies of polychlorinated dibenzofurans (PCDFs) on diverse gas chromatographic stationary phases on a set of novel molecular distance edge vector]. Lin ZH; Liu SS; Li ZL Se Pu; 2001 Mar; 19(2):116-23. PubMed ID: 12541652 [TBL] [Abstract][Full Text] [Related]
17. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices. Liu F; Liang Y; Cao C; Zhou N Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762 [TBL] [Abstract][Full Text] [Related]
18. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography. Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383 [TBL] [Abstract][Full Text] [Related]
19. The prediction for gas chromatographic retention index of disulfides on stationary phases of different polarity. Gao Y; Wang Y; Yao X; Zhang X; Liu M; Hu Z; Fan B Talanta; 2003 Feb; 59(2):229-37. PubMed ID: 18968903 [TBL] [Abstract][Full Text] [Related]
20. A new predictive model for the bioconcentration factors of polychlorinated biphenyls (PCBs) based on the molecular electronegativity distance vector (MEDV). Qin LT; Liu SS; Liu HL; Ge HL Chemosphere; 2008 Feb; 70(9):1577-87. PubMed ID: 17884134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]