These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20835442)

  • 21. Complex ZnO nanotree arrays with tunable top, stem and branch structures.
    Zhao F; Zheng JG; Yang X; Li X; Wang J; Zhao F; Wong KS; Liang C; Wu M
    Nanoscale; 2010 Sep; 2(9):1674-83. PubMed ID: 20820699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication, structural characterization and formation mechanism of multiferroic BiFeO3 nanotubes.
    Singh S; Krupanidhi SB
    J Nanosci Nanotechnol; 2008 Jan; 8(1):335-9. PubMed ID: 18468079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Template-based fabrication of nanowire-nanotube hybrid arrays.
    Ye Z; Liu H; Schultz I; Wu W; Naugle DG; Lyuksyutov I
    Nanotechnology; 2008 Aug; 19(32):325303. PubMed ID: 21828810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process.
    Shen G; Bando Y; Golberg D
    J Phys Chem B; 2006 Nov; 110(46):23170-4. PubMed ID: 17107161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular template approach for evolution of conducting polymer nanostructures: tracing the role of morphology on conductivity and solid state ordering.
    Antony MJ; Jayakannan M
    J Phys Chem B; 2010 Jan; 114(3):1314-24. PubMed ID: 20050618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO(2) nanotube surface by template-assisted electrodeposition.
    Lai Y; Huang Y; Wang H; Huang J; Chen Z; Lin C
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):117-22. PubMed ID: 19900795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Tb(OH)(3) nanowire arrays via a facile template-assisted hydrothermal approach.
    Tao F; Wang Z; Yao L; Cai W; Li X
    Nanotechnology; 2006 Feb; 17(4):1079-82. PubMed ID: 21727384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J; Jiang Y; Meng X; Lee CS; Lee ST
    Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable growth of TiO(2) nanostructures on Ti substrates.
    Peng X; Wang J; Thomas DF; Chen A
    Nanotechnology; 2005 Oct; 16(10):2389-95. PubMed ID: 20818023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of source material composition on morphology and optical properties of ZnO nanostructures.
    Zhang SL; Tam KH; Djurisić AB; Hsu YF
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1295-300. PubMed ID: 18468142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction.
    Teng X; Wang Q; Liu P; Han W; Frenkel AI; Wen W; Marinkovic N; Hanson JC; Rodriguez JA
    J Am Chem Soc; 2008 Jan; 130(3):1093-101. PubMed ID: 18161978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers.
    Sun XH; Lam S; Sham TK; Heigl F; Jürgensen A; Wong NB
    J Phys Chem B; 2005 Mar; 109(8):3120-5. PubMed ID: 16851331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.
    Park GC; Li ZY; Yang OB
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2728-731. PubMed ID: 29664592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe(2)O(3) nanostructures and nanostructured arrays.
    Zhou H; Wong SS
    ACS Nano; 2008 May; 2(5):944-58. PubMed ID: 19206492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capability of novel ZnFe₂O₄ nanotube arrays for visible-light induced degradation of 4-chlorophenol.
    Li X; Hou Y; Zhao Q; Teng W; Hu X; Chen G
    Chemosphere; 2011 Jan; 82(4):581-6. PubMed ID: 21040945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbothermal chemical vapor deposition route to Se one-dimensional nanostructures and their optical properties.
    Zhang H; Zuo M; Tan S; Li G; Zhang S; Hou J
    J Phys Chem B; 2005 Jun; 109(21):10653-7. PubMed ID: 16852293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.