These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20835458)

  • 1. Access to phosphoproteins and glycoproteins through semi-synthesis, Native Chemical Ligation and N→S acyl transfer.
    Masania J; Li J; Smerdon SJ; Macmillan D
    Org Biomol Chem; 2010 Nov; 8(22):5113-9. PubMed ID: 20835458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native N-glycopeptide thioester synthesis through N→S acyl transfer.
    Premdjee B; Adams AL; Macmillan D
    Bioorg Med Chem Lett; 2011 Sep; 21(17):4973-5. PubMed ID: 21676613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging the Knorr Pyrazole Synthesis for the Facile Generation of Thioester Surrogates for use in Native Chemical Ligation.
    Flood DT; Hintzen JCJ; Bird MJ; Cistrone PA; Chen JS; Dawson PE
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11634-11639. PubMed ID: 29908104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation.
    Kawakami T
    Top Curr Chem; 2015; 362():107-35. PubMed ID: 25370522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Protein Synthesis Using a Second-Generation N-Acylurea Linker for the Preparation of Peptide-Thioester Precursors.
    Blanco-Canosa JB; Nardone B; Albericio F; Dawson PE
    J Am Chem Soc; 2015 Jun; 137(22):7197-209. PubMed ID: 25978693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the scope of N → S acyl transfer in native peptide sequences.
    Cowper B; Shariff L; Chen W; Gibson SM; Di WL; Macmillan D
    Org Biomol Chem; 2015 Jul; 13(27):7469-76. PubMed ID: 26066020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for the preparation of peptide thioester and its application to glycoprotein synthesis.
    Hojo H; Onuma Y; Akimoto Y; Nakahara Y; Nakahara Y
    Adv Exp Med Biol; 2009; 611():129-30. PubMed ID: 19400124
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of peptide alkylthioesters using the intramolecular N,S-acyl shift properties of bis(2-sulfanylethyl)amido peptides.
    Dheur J; Ollivier N; Vallin A; Melnyk O
    J Org Chem; 2011 May; 76(9):3194-202. PubMed ID: 21417423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.
    Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A
    J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring neoglycoprotein assembly through native chemical ligation using neoglycopeptide thioesters prepared via N-->S acyl transfer.
    Richardson JP; Chan CH; Blanc J; Saadi M; Macmillan D
    Org Biomol Chem; 2010 Mar; 8(6):1351-60. PubMed ID: 20204207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of acyl transfer auxiliary-assisted glycoconjugation for glycoprotein semi-synthesis.
    Nyandoro K; Lamb CMG; Yu H; Shi J; Macmillan D
    Org Biomol Chem; 2022 Nov; 20(43):8506-8514. PubMed ID: 36278418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry.
    Otaka A; Sato K; Shigenaga A
    Top Curr Chem; 2015; 363():33-56. PubMed ID: 25467538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies.
    Ficht S; Payne RJ; Guy RT; Wong CH
    Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of peptide thioester formation via N→Se acyl transfer.
    Adams AL; Macmillan D
    J Pept Sci; 2013 Feb; 19(2):65-73. PubMed ID: 23297044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel post-ligation thioesterification device enables peptide ligation in the N to C direction: synthetic study of human glycodelin.
    Takenouchi T; Katayama H; Nakahara Y; Nakahara Y; Hojo H
    J Pept Sci; 2014 Jan; 20(1):55-61. PubMed ID: 24357164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem thiol switch synthesis of peptide thioesters via N-S acyl shift on thiazolidine.
    Sharma RK; Tam JP
    Org Lett; 2011 Oct; 13(19):5176-9. PubMed ID: 21902201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration of thiol additive-free native chemical ligation by intramolecular S → S acyl transfer.
    Schmalisch J; Seitz O
    Chem Commun (Camb); 2015 May; 51(35):7554-7. PubMed ID: 25846105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.