These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20835920)
41. Impact of sewage discharges on coastal water quality of Mumbai, India: present and future scenarios. Vijay R; Mardikar T; Kumar R Environ Monit Assess; 2016 Jul; 188(7):420. PubMed ID: 27317055 [TBL] [Abstract][Full Text] [Related]
42. Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Jayasiri HB; Purushothaman CS; Vennila A Mar Pollut Bull; 2013 Dec; 77(1-2):107-12. PubMed ID: 24210947 [TBL] [Abstract][Full Text] [Related]
43. Sewage-specific enterococcal bacteriophages and multiple water quality parameters for coastal water quality assessment. Kongprajug A; Booncharoen N; Jantakee K; Chyerochana N; Mongkolsuk S; Sirikanchana K Water Sci Technol; 2019 Mar; 79(5):799-807. PubMed ID: 31025958 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of equivalence between different methods for enumeration of fecal indicator bacteria before and after adoption of the new Bathing Water Directive and risk assessment of pollution. Lušić DV; Lušić D; Pešut D; Mićović V; Glad M; Bilajac L; Peršić V Mar Pollut Bull; 2013 Aug; 73(1):252-7. PubMed ID: 23756111 [TBL] [Abstract][Full Text] [Related]
45. Enterococcal Concentrations in a Coastal Ecosystem Are a Function of Fecal Source Input, Environmental Conditions, and Environmental Sources. Rothenheber D; Jones S Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 30006393 [TBL] [Abstract][Full Text] [Related]
46. Abundance, characteristics and surface degradation features of microplastics in beach sediments of five coastal areas in Tamil Nadu, India. Sathish N; Jeyasanta KI; Patterson J Mar Pollut Bull; 2019 May; 142():112-118. PubMed ID: 31232283 [TBL] [Abstract][Full Text] [Related]
47. Hydrodynamic assessment of sewage impact on water quality of Malad Creek, Mumbai, India. Vijay R; Sardar VK; Dhage SS; Kelkar PS; Gupta A Environ Monit Assess; 2010 Jun; 165(1-4):559-71. PubMed ID: 19424815 [TBL] [Abstract][Full Text] [Related]
48. Application of PFGE to source tracking of faecal pollution in coastal recreation area: a case study in Aoshima Beach, Japan. Furukawa T; Yoshida T; Suzuki Y J Appl Microbiol; 2011 Mar; 110(3):688-96. PubMed ID: 21244588 [TBL] [Abstract][Full Text] [Related]
49. Assessment of coastal water quality at Bakkhali, West Bengal (India). Singh S; Bhadurfi B; Banerjee PK; Datta S J Environ Sci Eng; 2012 Apr; 54(2):217-26. PubMed ID: 24749373 [TBL] [Abstract][Full Text] [Related]
50. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection. Xie Y; Qiu N; Wang G Mar Pollut Bull; 2017 May; 118(1-2):5-16. PubMed ID: 28215556 [TBL] [Abstract][Full Text] [Related]
51. Escherichia coli in marine water: Comparison of methods for the assessment of recreational bathing water samples. Lušić DV; Jozić S; Cenov A; Glad M; Bulić M; Lušić D Mar Pollut Bull; 2016 Dec; 113(1-2):438-443. PubMed ID: 27771099 [TBL] [Abstract][Full Text] [Related]
52. Fecal indicator bacteria levels at beaches in the Florida Keys after Hurricane Irma. Roca MA; Brown RS; Solo-Gabriele HM Mar Pollut Bull; 2019 Jan; 138():266-273. PubMed ID: 30660273 [TBL] [Abstract][Full Text] [Related]
53. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China. Wang Q; Wu X; Zhao B; Qin J; Peng T PLoS One; 2015; 10(3):e0118590. PubMed ID: 25837673 [TBL] [Abstract][Full Text] [Related]
54. Bathing waters: new directive, new standards, new quality approach. Mansilha CR; Coelho CA; Heitor AM; Amado J; Martins JP; Gameiro P Mar Pollut Bull; 2009 Oct; 58(10):1562-5. PubMed ID: 19732913 [TBL] [Abstract][Full Text] [Related]
55. Urbanised beaches of the Ligurian coastal area (NW Mediterranean): a classification based on organic-matter characteristics and hydrolytic enzymatic activities. Misic C; Covazzi Harriague A Mar Environ Res; 2013; 87-88():103-11. PubMed ID: 23660184 [TBL] [Abstract][Full Text] [Related]
56. Holistic approach for quantification and identification of pollutant sources of a river basin by analyzing the open drains using an advanced multivariate clustering. Srinivas R; Singh AP; Gupta AA; Kumar P Environ Monit Assess; 2018 Nov; 190(12):720. PubMed ID: 30426281 [TBL] [Abstract][Full Text] [Related]
57. [Water Pollution Characteristics and Source Apportionment in Rapid Urbanization Region of the Lower Yangtze River: Considering the Qinhuai River Catchment]. Ma XX; Gong C; Guo JX; Wang LC; Xu YY; Zhao CF Huan Jing Ke Xue; 2021 Jul; 42(7):3291-3303. PubMed ID: 34212655 [TBL] [Abstract][Full Text] [Related]
58. [Sanitary and microbiological characteristics of surface waters of Vladivostok beaches]. Buzoleva LS Gig Sanit; 2008; (4):4-7. PubMed ID: 19097423 [TBL] [Abstract][Full Text] [Related]
59. Escherichia coli pollution in a Baltic Sea lagoon: a model-based source and spatial risk assessment. Schippmann B; Schernewski G; Gräwe U Int J Hyg Environ Health; 2013 Jul; 216(4):408-20. PubMed ID: 23337127 [TBL] [Abstract][Full Text] [Related]
60. Organic matter recycling in a beach environment influenced by sunscreen products and increased inorganic nutrient supply (Sturla, Ligurian Sea, NW Mediterranean). Misic C; Covazzi Harriague A; Trielli F Sci Total Environ; 2011 Apr; 409(9):1689-96. PubMed ID: 21316740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]