These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 20836002)
1. Thermodynamically based constraints for rate coefficients of large biochemical networks. Vlad MO; Ross J Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):348-358. PubMed ID: 20836002 [TBL] [Abstract][Full Text] [Related]
2. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium. Vlad MO; Popa VT; Ross J J Phys Chem A; 2011 Feb; 115(4):507-13. PubMed ID: 21182240 [TBL] [Abstract][Full Text] [Related]
3. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration. Fleming RM; Thiele I J Theor Biol; 2012 Dec; 314():173-81. PubMed ID: 22947275 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamically feasible kinetic models of reaction networks. Ederer M; Gilles ED Biophys J; 2007 Mar; 92(6):1846-57. PubMed ID: 17208985 [TBL] [Abstract][Full Text] [Related]
5. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Liebermeister W; Uhlendorf J; Klipp E Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Qian H; Beard DA Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355 [TBL] [Abstract][Full Text] [Related]
8. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Liebermeister W; Klipp E Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669 [TBL] [Abstract][Full Text] [Related]
9. Detailed balance in multiple-well chemical reactions. Miller JA; Klippenstein SJ; Robertson SH; Pilling MJ; Green NJ Phys Chem Chem Phys; 2009 Feb; 11(8):1128-37. PubMed ID: 19209353 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic constraints for biochemical networks. Beard DA; Babson E; Curtis E; Qian H J Theor Biol; 2004 Jun; 228(3):327-33. PubMed ID: 15135031 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamically consistent model calibration in chemical kinetics. Jenkinson G; Goutsias J BMC Syst Biol; 2011 May; 5():64. PubMed ID: 21548948 [TBL] [Abstract][Full Text] [Related]
13. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. Fleming RM; Maes CM; Saunders MA; Ye Y; Palsson BØ J Theor Biol; 2012 Jan; 292():71-7. PubMed ID: 21983269 [TBL] [Abstract][Full Text] [Related]
14. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. Yang F; Qian H; Beard DA Metab Eng; 2005 Jul; 7(4):251-9. PubMed ID: 16140239 [TBL] [Abstract][Full Text] [Related]
15. Sharper graph-theoretical conditions for the stabilization of complex reaction networks. Knight D; Shinar G; Feinberg M Math Biosci; 2015 Apr; 262():10-27. PubMed ID: 25600138 [TBL] [Abstract][Full Text] [Related]
16. Relations between biochemical thermodynamics and biochemical kinetics. Alberty RA Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115 [TBL] [Abstract][Full Text] [Related]
17. Nested uncertainties in biochemical models. Schaber J; Liebermeister W; Klipp E IET Syst Biol; 2009 Jan; 3(1):1-9. PubMed ID: 19154080 [TBL] [Abstract][Full Text] [Related]
18. A computational approach to persistence, permanence, and endotacticity of biochemical reaction systems. Johnston MD; Pantea C; Donnell P J Math Biol; 2016 Jan; 72(1-2):467-98. PubMed ID: 25986743 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic Bounds on Symmetry Breaking in Linear and Catalytic Biochemical Systems. Liang S; De Los Rios P; Busiello DM Phys Rev Lett; 2024 May; 132(22):228402. PubMed ID: 38877915 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models. Pekař M Front Chem; 2018; 6():35. PubMed ID: 29546040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]