These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20836011)

  • 41. Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine.
    Chevalier NR; Ammouche Y; Gomis A; Teyssaire C; de Santa Barbara P; Faure S
    Am J Physiol Gastrointest Liver Physiol; 2020 Oct; 319(4):G519-G528. PubMed ID: 32877218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract.
    Ward SM; Sanders KM
    J Physiol; 2006 Nov; 576(Pt 3):675-82. PubMed ID: 16973700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle.
    Spencer NJ; Hibberd TJ; Travis L; Wiklendt L; Costa M; Hu H; Brookes SJ; Wattchow DA; Dinning PG; Keating DJ; Sorensen J
    J Neurosci; 2018 Jun; 38(24):5507-5522. PubMed ID: 29807910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interstitial cells of Cajal: once negligible players, now blazing protagonists.
    Faussone-Pellegrini MS
    Ital J Anat Embryol; 2005; 110(1):11-31. PubMed ID: 16038379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interstitial cells of Cajal at the clinical and scientific interface.
    Sanders KM
    J Physiol; 2006 Nov; 576(Pt 3):683-7. PubMed ID: 16945970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biologic clocks and the gut.
    Hoogerwerf WA
    Curr Gastroenterol Rep; 2006 Oct; 8(5):353-9. PubMed ID: 16968601
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuroeffector apparatus in gastrointestinal smooth muscle organs.
    Sanders KM; Hwang SJ; Ward SM
    J Physiol; 2010 Dec; 588(Pt 23):4621-39. PubMed ID: 20921202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding.
    Spencer NJ; Keating DJ
    Adv Exp Med Biol; 2016; 891():113-22. PubMed ID: 27379639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrical activity of small intestinal smooth muscle.
    Baker RD
    Am J Surg; 1969 Jun; 117(6):781-97. PubMed ID: 4893846
    [No Abstract]   [Full Text] [Related]  

  • 51. Histology of the digestive tract of the freshwater stingray Himantura signifer Compagno and Roberts, 1982 (Elasmobranchii, Dasyatidae).
    Chatchavalvanich K; Marcos R; Poonpirom J; Thongpan A; Rocha E
    Anat Embryol (Berl); 2006 Oct; 211(5):507-18. PubMed ID: 16783585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract.
    Riddle MR; Boesmans W; Caballero O; Kazwiny Y; Tabin CJ
    Dev Biol; 2018 Sep; 441(2):285-296. PubMed ID: 29883660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effects of dingduwan on electric activities of gastrointestinal smooth muscle and effect of gastrointestinal motility].
    Sun SS; Yuan SQ; Tang Y
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 1994 Jul; 14(7):424-6. PubMed ID: 7950231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for in Vivo Dissolution and Absorption of Ionizable Drugs.
    Hens B; Tsume Y; Bermejo M; Paixao P; Koenigsknecht MJ; Baker JR; Hasler WL; Lionberger R; Fan J; Dickens J; Shedden K; Wen B; Wysocki J; Loebenberg R; Lee A; Frances A; Amidon G; Yu A; Benninghoff G; Salehi N; Talattof A; Sun D; Amidon GL
    Mol Pharm; 2017 Dec; 14(12):4281-4294. PubMed ID: 28737409
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of Spontaneous Tone by Gastrointestinal Sphincters.
    Keef K; Cobine C
    Adv Exp Med Biol; 2019; 1124():47-74. PubMed ID: 31183822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen).
    Zeng LQ; Li FJ; Li XM; Cao ZD; Fu SJ; Zhang YG
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Jul; 162(3):200-11. PubMed ID: 22405802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of gut microbiota in the association between gastrointestinal motility and 5‑HT expression/M2 macrophage abundance in the gastrointestinal tract.
    Yang M; Fukui H; Eda H; Kitayama Y; Hara K; Kodani M; Tomita T; Oshima T; Watari J; Miwa H
    Mol Med Rep; 2017 Sep; 16(3):3482-3488. PubMed ID: 28714029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrical activity of gastrointestinal smooth muscle.
    Duthie HL
    Gut; 1974 Aug; 15(8):669-81. PubMed ID: 4371683
    [No Abstract]   [Full Text] [Related]  

  • 59. A new approach for digestive disease diagnosis: Dynamics of gastrointestinal electrical activity.
    Mazloom R
    Med Hypotheses; 2019 Jul; 128():64-68. PubMed ID: 31203912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in colonic motor complexes in mice.
    Spencer NJ; Costa M; Hibberd TJ; Wood JD
    Am J Physiol Gastrointest Liver Physiol; 2021 Jan; 320(1):G12-G29. PubMed ID: 33085903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.