BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 20836092)

  • 1. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.
    Sasaki Y; Akiyoshi K
    Chem Rec; 2010 Dec; 10(6):366-76. PubMed ID: 20836092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.
    Jiang Y; Chen J; Deng C; Suuronen EJ; Zhong Z
    Biomaterials; 2014 Jun; 35(18):4969-85. PubMed ID: 24674460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure.
    Yusa S; Sugahara M; Endo T; Morishima Y
    Langmuir; 2009 May; 25(9):5258-65. PubMed ID: 19292434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones.
    Hashimoto Y; Mukai SA; Sasaki Y; Akiyoshi K
    Adv Healthc Mater; 2018 Dec; 7(23):e1800729. PubMed ID: 30221496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery.
    Wu W; Shen J; Gai Z; Hong K; Banerjee P; Zhou S
    Biomaterials; 2011 Dec; 32(36):9876-87. PubMed ID: 21944827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function.
    Hirakura T; Yasugi K; Nemoto T; Sato M; Shimoboji T; Aso Y; Morimoto N; Akiyoshi K
    J Control Release; 2010 Mar; 142(3):483-9. PubMed ID: 19951730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and processing of nanogels as delivery systems for peptides and proteins.
    Arnfast L; Madsen CG; Jorgensen L; Baldursdottir S
    Ther Deliv; 2014 Jun; 5(6):691-708. PubMed ID: 25090282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New progress and prospects: The application of nanogel in drug delivery.
    Zhang H; Zhai Y; Wang J; Zhai G
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():560-568. PubMed ID: 26706564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging applications of multifunctional elastin-like recombinamers.
    Rodríguez-Cabello JC; Martín L; Girotti A; García-Arévalo C; Arias FJ; Alonso M
    Nanomedicine (Lond); 2011 Jan; 6(1):111-22. PubMed ID: 21182423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications.
    Moya-Ortega MD; Alvarez-Lorenzo C; Concheiro A; Loftsson T
    Int J Pharm; 2012 May; 428(1-2):152-63. PubMed ID: 22388054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nanobiomaterials].
    Shen JC
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2006 Aug; 28(4):472-4. PubMed ID: 16995295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers.
    Morimoto N; Endo T; Ohtomi M; Iwasaki Y; Akiyoshi K
    Macromol Biosci; 2005 Aug; 5(8):710-6. PubMed ID: 16080166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity.
    Morimoto N; Endo T; Iwasaki Y; Akiyoshi K
    Biomacromolecules; 2005; 6(4):1829-34. PubMed ID: 16004415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive nanogel composites and their application in nanomedicine.
    Molina M; Asadian-Birjand M; Balach J; Bergueiro J; Miceli E; Calderón M
    Chem Soc Rev; 2015 Oct; 44(17):6161-86. PubMed ID: 26505057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cytoplasmic delivery of siRNA using a stabilized polyion complex based on PEGylated nanogels with a cross-linked polyamine structure.
    Tamura A; Oishi M; Nagasaki Y
    Biomacromolecules; 2009 Jul; 10(7):1818-27. PubMed ID: 19505137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mild oxidation of thiofunctional polymers to cytocompatible and stimuli-sensitive hydrogels and nanogels.
    Singh S; Zilkowski I; Ewald A; Maurell-Lopez T; Albrecht K; Möller M; Groll J
    Macromol Biosci; 2013 Apr; 13(4):470-82. PubMed ID: 23401217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation.
    Wu L; Zhou H; Sun HJ; Zhao Y; Yang X; Cheng SZ; Yang G
    Biomacromolecules; 2013 Apr; 14(4):1078-84. PubMed ID: 23458422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.