BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20836451)

  • 1. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival.
    Booth MG; Hoeksema JD
    Ecology; 2010 Aug; 91(8):2294-302. PubMed ID: 20836451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.
    Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL
    Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection.
    Dickie IA; Oleksyn J; Reich PB; Karolewski P; Zytkowiak R; Jagodzinski AM; Turzanska E
    Mycorrhiza; 2006 Mar; 16(2):73-79. PubMed ID: 16322987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community.
    Aldrich-Wolfe L
    Ecology; 2007 Mar; 88(3):559-66. PubMed ID: 17503582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora.
    Zhang S; Vaario LM; Xia Y; Matsushita N; Geng Q; Tsuruta M; Kurokochi H; Lian C
    Mycorrhiza; 2019 May; 29(3):207-218. PubMed ID: 30953171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest.
    McGuire KL
    Ecology; 2007 Mar; 88(3):567-74. PubMed ID: 17503583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance.
    Gehring CA; Connell JH
    Mycorrhiza; 2006 Mar; 16(2):89-98. PubMed ID: 16133252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species.
    Bachelot B; Uriarte M; McGuire KL; Thompson J; Zimmerman J
    Ecology; 2017 Mar; 98(3):712-720. PubMed ID: 27984646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil fungal networks moderate density-dependent survival and growth of seedlings.
    Liang M; Shi L; Burslem DFRP; Johnson D; Fang M; Zhang X; Yu S
    New Phytol; 2021 Jun; 230(5):2061-2071. PubMed ID: 33506513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil fungal networks maintain local dominance of ectomycorrhizal trees.
    Liang M; Johnson D; Burslem DFRP; Yu S; Fang M; Taylor JD; Taylor AFS; Helgason T; Liu X
    Nat Commun; 2020 May; 11(1):2636. PubMed ID: 32457288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees.
    Schüßler A; Krüger C; Urgiles N
    Mycorrhiza; 2016 Apr; 26(3):199-207. PubMed ID: 26260945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest.
    Corrales A; Mangan SA; Turner BL; Dalling JW
    Ecol Lett; 2016 Apr; 19(4):383-92. PubMed ID: 26833573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils.
    Haskins KE; Gehring CA
    Oecologia; 2005 Aug; 145(1):123-31. PubMed ID: 15891858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.
    Janos DP; Scott J; Aristizábal C; Bowman DM
    PLoS One; 2013; 8(2):e57716. PubMed ID: 23460899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline.
    Hewitt RE; Chapin FS; Hollingsworth TN; Taylor DL
    Mol Ecol; 2017 Jul; 26(14):3826-3838. PubMed ID: 28401610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited overall impacts of ectomycorrhizal inoculation on recruitment of boreal trees into Arctic tundra following wildfire belie species-specific responses.
    Hewitt RE; Chapin FS; Hollingsworth TN; Mack MC; Rocha AV; Taylor DL
    PLoS One; 2020; 15(7):e0235932. PubMed ID: 32645087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations.
    Ahonen-Jonnarth U; Göransson A; Finlay RD
    Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential soil fungus accumulation and density dependence of trees in a subtropical forest.
    Chen L; Swenson NG; Ji N; Mi X; Ren H; Guo L; Ma K
    Science; 2019 Oct; 366(6461):124-128. PubMed ID: 31604314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics.
    Bennett JA; Maherali H; Reinhart KO; Lekberg Y; Hart MM; Klironomos J
    Science; 2017 Jan; 355(6321):181-184. PubMed ID: 28082590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.