These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 20836457)
1. The role of Sphagnum mosses in the methane cycling of a boreal mire. Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457 [TBL] [Abstract][Full Text] [Related]
2. Climate drivers alter nitrogen availability in surface peat and decouple N Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440 [TBL] [Abstract][Full Text] [Related]
3. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. Wang Y; Xue D; Chen X; Qiu Q; Chen H Microb Ecol; 2024 Feb; 87(1):47. PubMed ID: 38407642 [TBL] [Abstract][Full Text] [Related]
4. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368 [TBL] [Abstract][Full Text] [Related]
5. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. Pérez R; Casal J; Muñoz R; Lebrero R Sci Total Environ; 2019 Oct; 688():684-690. PubMed ID: 31254834 [TBL] [Abstract][Full Text] [Related]
6. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in sphagnum mosses. Putkinen A; Larmola T; Tuomivirta T; Siljanen HM; Bodrossy L; Tuittila ES; Fritze H Front Microbiol; 2012; 3():15. PubMed ID: 22291695 [TBL] [Abstract][Full Text] [Related]
7. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Kip N; Ouyang W; van Winden J; Raghoebarsing A; van Niftrik L; Pol A; Pan Y; Bodrossy L; van Donselaar EG; Reichart GJ; Jetten MS; Damsté JS; Op den Camp HJ Appl Environ Microbiol; 2011 Aug; 77(16):5643-54. PubMed ID: 21724892 [TBL] [Abstract][Full Text] [Related]
8. The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. Kox MAR; Aalto SL; Penttilä T; Ettwig KF; Jetten MSM; van Kessel MAHJ AMB Express; 2018 May; 8(1):76. PubMed ID: 29730829 [TBL] [Abstract][Full Text] [Related]
9. Methanotrophy induces nitrogen fixation during peatland development. Larmola T; Leppänen SM; Tuittila ES; Aarva M; Merilä P; Fritze H; Tiirola M Proc Natl Acad Sci U S A; 2014 Jan; 111(2):734-9. PubMed ID: 24379382 [TBL] [Abstract][Full Text] [Related]
10. Influence of temperature on the δ van Winden JF; Talbot HM; Reichart GJ; McNamara NP; Benthien A; Sinninghe Damsté JS Geobiology; 2020 Jul; 18(4):497-507. PubMed ID: 32180328 [TBL] [Abstract][Full Text] [Related]
11. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland. Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981 [TBL] [Abstract][Full Text] [Related]
12. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. Zhao J; Peichl M; Nilsson MB Glob Chang Biol; 2016 Feb; 22(2):750-62. PubMed ID: 26452333 [TBL] [Abstract][Full Text] [Related]
13. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Chen Y; Dumont MG; McNamara NP; Chamberlain PM; Bodrossy L; Stralis-Pavese N; Murrell JC Environ Microbiol; 2008 Feb; 10(2):446-59. PubMed ID: 18093158 [TBL] [Abstract][Full Text] [Related]
14. Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. Kox MAR; van den Elzen E; Lamers LPM; Jetten MSM; van Kessel MAHJ AMB Express; 2020 Mar; 10(1):61. PubMed ID: 32236738 [TBL] [Abstract][Full Text] [Related]
15. A Novel Laboratory-Scale Mesocosm Setup to Study Methane Emission Mitigation by Kox MAR; Smolders AJP; Speth DR; Lamers LPM; Op den Camp HJM; Jetten MSM; van Kessel MAHJ Front Microbiol; 2021; 12():652486. PubMed ID: 33981290 [TBL] [Abstract][Full Text] [Related]
16. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Raghoebarsing AA; Smolders AJ; Schmid MC; Rijpstra WI; Wolters-Arts M; Derksen J; Jetten MS; Schouten S; Sinninghe Damsté JS; Lamers LP; Roelofs JG; Op den Camp HJ; Strous M Nature; 2005 Aug; 436(7054):1153-6. PubMed ID: 16121180 [TBL] [Abstract][Full Text] [Related]
17. Microbial Community Composition and Methanotroph Diversity of a Subarctic Wetland in Russia. Danilova OV; Belova SE; Gagarinova IV; Dedysh SN Mikrobiologiia; 2016 Sep; 85(5):545-554. PubMed ID: 29364602 [TBL] [Abstract][Full Text] [Related]
18. Water table level controls methanogenic and methanotrophic communities and methane emissions in a Tian W; Wang H; Xiang X; Loni PC; Qiu X; Wang R; Huang X; Tuovinen OH Microbiol Spectr; 2023 Sep; 11(5):e0199223. PubMed ID: 37747896 [TBL] [Abstract][Full Text] [Related]
19. How does elevated ozone reduce methane emissions from peatlands? Toet S; Oliver V; Ineson P; McLoughlin S; Helgason T; Peacock S; Stott AW; Barnes J; Ashmore M Sci Total Environ; 2017 Feb; 579():60-71. PubMed ID: 27866746 [TBL] [Abstract][Full Text] [Related]
20. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Ma XY; Xu H; Cao ZY; Shu L; Zhu RL Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]