These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20836537)

  • 1. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.
    Jang W; Chen Z; Bao W; Lau CN; Dames C
    Nano Lett; 2010 Oct; 10(10):3909-13. PubMed ID: 20836537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness-Dependent Cross-Plane Thermal Conductivity Measurements of Exfoliated Hexagonal Boron Nitride.
    Jaffe GR; Smith KJ; Watanabe K; Taniguchi T; Lagally MG; Eriksson MA; Brar VW
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12545-12550. PubMed ID: 36848224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains.
    Kuang Y; Lindsay L; Huang B
    Nano Lett; 2015 Sep; 15(9):6121-7. PubMed ID: 26241731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous size dependence of the thermal conductivity of graphene ribbons.
    Nika DL; Askerov AS; Balandin AA
    Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Characterization of the Anisotropic Thermal Properties of Encapsulated Two-Dimensional MoS
    Jiang S; Lebedev D; Andrews L; Gish JT; Song TW; Hersam MC; Balogun O
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensional crossover of thermal transport in few-layer graphene.
    Ghosh S; Bao W; Nika DL; Subrina S; Pokatilov EP; Lau CN; Balandin AA
    Nat Mater; 2010 Jul; 9(7):555-8. PubMed ID: 20453845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Copper-Graphene Composite Architecture on Thermal Transport Efficiency.
    Kazakov AM; Korznikova GF; Tuvalev II; Izosimov AA; Korznikova EA
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite.
    Machida Y; Matsumoto N; Isono T; Behnia K
    Science; 2020 Jan; 367(6475):309-312. PubMed ID: 31949080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The superior effect of edge functionalization relative to basal plane functionalization of graphene in enhancing the thermal conductivity of polymer-graphene nanocomposites - a combined molecular dynamics and Green's functions study.
    Muthaiah R; Tarannum F; Danayat S; Annam RS; Nayal AS; Yedukondalu N; Garg J
    Phys Chem Chem Phys; 2022 Jun; 24(23):14640-14650. PubMed ID: 35670366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene.
    Chen J; Zhang G; Li B
    Nanoscale; 2013 Jan; 5(2):532-6. PubMed ID: 23223896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets.
    Mercado E; Anaya J; Kuball M
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17910-17919. PubMed ID: 33844921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.
    Liang Q; Yao X; Wang W; Liu Y; Wong CP
    ACS Nano; 2011 Mar; 5(3):2392-401. PubMed ID: 21384860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods.
    Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT
    ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites.
    Shen X; Wang Z; Wu Y; Liu X; He YB; Kim JK
    Nano Lett; 2016 Jun; 16(6):3585-93. PubMed ID: 27140423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in Conductive-Radiative Heat Transfer Mechanism Forced by Graphite Microfiller in Expanded Polystyrene Thermal Insulation-Experimental and Simulated Investigations.
    Blazejczyk A; Jastrzebski C; Wierzbicki M
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.