BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20836594)

  • 1. Navigating with fingers and feet: analysis of human (Homo sapiens) and rat (Rattus norvegicus) movement organization during nonvisual spatial tasks.
    Wallace DG; Köppen JR; Jones JL; Winter SS; Wagner SJ
    J Comp Psychol; 2010 Nov; 124(4):381-94. PubMed ID: 20836594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of movement kinematics on analogous spatial learning tasks demonstrates conservation of direction and distance estimation across humans (Homo sapiens) and rats (Rattus norvegicus).
    Köppen JR; Winter SS; Loda EL; Apger BP; Grimelli D; Hamilton DA; Wallace DG
    J Comp Psychol; 2013 May; 127(2):179-93. PubMed ID: 23088648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammillothalamic tract lesions disrupt dead reckoning in the rat.
    Winter SS; Wagner SJ; McMillin JL; Wallace DG
    Eur J Neurosci; 2011 Jan; 33(2):371-81. PubMed ID: 21138488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement characteristics support a role for dead reckoning in organizing exploratory behavior.
    Wallace DG; Hamilton DA; Whishaw IQ
    Anim Cogn; 2006 Jul; 9(3):219-28. PubMed ID: 16767471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The medial frontal cortex contributes to but does not organize rat exploratory behavior.
    Blankenship PA; Stuebing SL; Winter SS; Cheatwood JL; Benson JD; Whishaw IQ; Wallace DG
    Neuroscience; 2016 Nov; 336():1-11. PubMed ID: 27590266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rats' orientation is more important than start point location for successful place learning.
    Skinner DM; Horne MR; Murphy KE; Martin GM
    J Exp Psychol Anim Behav Process; 2010 Jan; 36(1):110-6. PubMed ID: 20141321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic system structures differentially contribute to exploratory trip organization of the rat.
    Winter SS; Köppen JR; Ebert TB; Wallace DG
    Hippocampus; 2013 Feb; 23(2):139-52. PubMed ID: 23034954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats.
    Hines DJ; Whishaw IQ
    Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of spatial cues to memory: direction, but not cue, changes support response reversal learning.
    Wright SL; Williams D; Evans JH; Skinner DM; Martin GM
    J Exp Psychol Anim Behav Process; 2009 Apr; 35(2):177-85. PubMed ID: 19364227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampectomized rats are impaired in homing by path integration.
    Maaswinkel H; Jarrard LE; Whishaw IQ
    Hippocampus; 1999; 9(5):553-61. PubMed ID: 10560926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowing where we're heading--when nothing moves.
    Snyder JJ; Bischof WF
    Brain Res; 2010 Apr; 1323():127-38. PubMed ID: 20132801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective hippocampal cholinergic deafferentation impairs self-movement cue use during a food hoarding task.
    Martin MM; Wallace DG
    Behav Brain Res; 2007 Oct; 183(1):78-86. PubMed ID: 17610963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesion of posterior parietal cortex in rats does not disrupt place avoidance based on either distal or proximal orienting cues.
    Svoboda J; Telensky P; Blahna K; Zach P; Bures J; Stuchlik A
    Neurosci Lett; 2008 Nov; 445(1):73-7. PubMed ID: 18786608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of exogenous cues in a visual detection and discrimination task: delayed attention withdrawal and/or speeded motor inhibition?
    Van der Lubbe RH; Vogel RO; Postma A
    J Cogn Neurosci; 2005 Dec; 17(12):1829-40. PubMed ID: 16356322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test.
    Gharbawie OA; Whishaw PA; Whishaw IQ
    Behav Brain Res; 2004 May; 151(1-2):125-35. PubMed ID: 15084428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice.
    Donaldson TN; Jennings KT; Cherep LA; Blankenship PA; Blackwell AA; Yoder RM; Wallace DG
    Behav Processes; 2019 May; 162():29-38. PubMed ID: 30684732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial performance is more sensitive to ethanol than nonspatial performance regardless of cue proximity.
    White AM; Elek TM; Beltz TL; Best PJ
    Alcohol Clin Exp Res; 1998 Dec; 22(9):2102-7. PubMed ID: 9884157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation.
    Loewen I; Wallace DG; Whishaw IQ
    Dev Psychobiol; 2005 May; 46(4):350-61. PubMed ID: 15832318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of spatial integration in the perception of surface orientation with active touch.
    Giachritsis CD; Wing AM; Lovell PG
    Atten Percept Psychophys; 2009 Oct; 71(7):1628-40. PubMed ID: 19801622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.