These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20836594)

  • 1. Navigating with fingers and feet: analysis of human (Homo sapiens) and rat (Rattus norvegicus) movement organization during nonvisual spatial tasks.
    Wallace DG; Köppen JR; Jones JL; Winter SS; Wagner SJ
    J Comp Psychol; 2010 Nov; 124(4):381-94. PubMed ID: 20836594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of movement kinematics on analogous spatial learning tasks demonstrates conservation of direction and distance estimation across humans (Homo sapiens) and rats (Rattus norvegicus).
    Köppen JR; Winter SS; Loda EL; Apger BP; Grimelli D; Hamilton DA; Wallace DG
    J Comp Psychol; 2013 May; 127(2):179-93. PubMed ID: 23088648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammillothalamic tract lesions disrupt dead reckoning in the rat.
    Winter SS; Wagner SJ; McMillin JL; Wallace DG
    Eur J Neurosci; 2011 Jan; 33(2):371-81. PubMed ID: 21138488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement characteristics support a role for dead reckoning in organizing exploratory behavior.
    Wallace DG; Hamilton DA; Whishaw IQ
    Anim Cogn; 2006 Jul; 9(3):219-28. PubMed ID: 16767471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The medial frontal cortex contributes to but does not organize rat exploratory behavior.
    Blankenship PA; Stuebing SL; Winter SS; Cheatwood JL; Benson JD; Whishaw IQ; Wallace DG
    Neuroscience; 2016 Nov; 336():1-11. PubMed ID: 27590266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rats' orientation is more important than start point location for successful place learning.
    Skinner DM; Horne MR; Murphy KE; Martin GM
    J Exp Psychol Anim Behav Process; 2010 Jan; 36(1):110-6. PubMed ID: 20141321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic system structures differentially contribute to exploratory trip organization of the rat.
    Winter SS; Köppen JR; Ebert TB; Wallace DG
    Hippocampus; 2013 Feb; 23(2):139-52. PubMed ID: 23034954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats.
    Hines DJ; Whishaw IQ
    Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of spatial cues to memory: direction, but not cue, changes support response reversal learning.
    Wright SL; Williams D; Evans JH; Skinner DM; Martin GM
    J Exp Psychol Anim Behav Process; 2009 Apr; 35(2):177-85. PubMed ID: 19364227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampectomized rats are impaired in homing by path integration.
    Maaswinkel H; Jarrard LE; Whishaw IQ
    Hippocampus; 1999; 9(5):553-61. PubMed ID: 10560926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowing where we're heading--when nothing moves.
    Snyder JJ; Bischof WF
    Brain Res; 2010 Apr; 1323():127-38. PubMed ID: 20132801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective hippocampal cholinergic deafferentation impairs self-movement cue use during a food hoarding task.
    Martin MM; Wallace DG
    Behav Brain Res; 2007 Oct; 183(1):78-86. PubMed ID: 17610963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesion of posterior parietal cortex in rats does not disrupt place avoidance based on either distal or proximal orienting cues.
    Svoboda J; Telensky P; Blahna K; Zach P; Bures J; Stuchlik A
    Neurosci Lett; 2008 Nov; 445(1):73-7. PubMed ID: 18786608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of exogenous cues in a visual detection and discrimination task: delayed attention withdrawal and/or speeded motor inhibition?
    Van der Lubbe RH; Vogel RO; Postma A
    J Cogn Neurosci; 2005 Dec; 17(12):1829-40. PubMed ID: 16356322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test.
    Gharbawie OA; Whishaw PA; Whishaw IQ
    Behav Brain Res; 2004 May; 151(1-2):125-35. PubMed ID: 15084428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice.
    Donaldson TN; Jennings KT; Cherep LA; Blankenship PA; Blackwell AA; Yoder RM; Wallace DG
    Behav Processes; 2019 May; 162():29-38. PubMed ID: 30684732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial performance is more sensitive to ethanol than nonspatial performance regardless of cue proximity.
    White AM; Elek TM; Beltz TL; Best PJ
    Alcohol Clin Exp Res; 1998 Dec; 22(9):2102-7. PubMed ID: 9884157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation.
    Loewen I; Wallace DG; Whishaw IQ
    Dev Psychobiol; 2005 May; 46(4):350-61. PubMed ID: 15832318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of spatial integration in the perception of surface orientation with active touch.
    Giachritsis CD; Wing AM; Lovell PG
    Atten Percept Psychophys; 2009 Oct; 71(7):1628-40. PubMed ID: 19801622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.