BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 20836831)

  • 1. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado.
    Barker CM; Bolling BG; Black WC; Moore CG; Eisen L
    J Vector Ecol; 2009 Dec; 34(2):276-93. PubMed ID: 20836831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado.
    Bolling BG; Barker CM; Moore CG; Pape WJ; Eisen L
    J Med Entomol; 2009 Nov; 46(6):1519-31. PubMed ID: 19960707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosquito species richness, composition, and abundance along habitat-climate-elevation gradients in the northern Colorado Front Range.
    Eisen L; Bolling BG; Blair CD; Beaty BJ; Moore CG
    J Med Entomol; 2008 Jul; 45(4):800-11. PubMed ID: 18714885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
    Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ
    Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach.
    Schurich JA; Kumar S; Eisen L; Moore CG
    J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota.
    Bell JA; Mickelson NJ; Vaughan JA
    Vector Borne Zoonotic Dis; 2005; 5(4):373-82. PubMed ID: 16417433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between distance from major larval habitats and abundance of adult mosquitoes in semiarid plains landscapes in Colorado.
    Barker CM; Bolling BG; Moore CG; Eisen L
    J Med Entomol; 2009 Nov; 46(6):1290-8. PubMed ID: 19960672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of methods for collecting blood-engorged mosquitoes from habitats within a wildlife refuge.
    Friesen KM; Johnson GD
    J Am Mosq Control Assoc; 2013 Jun; 29(2):102-7. PubMed ID: 23923324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector competence of California mosquitoes for West Nile virus.
    Goddard LB; Roth AE; Reisen WK; Scott TW
    Emerg Infect Dis; 2002 Dec; 8(12):1385-91. PubMed ID: 12498652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States.
    Andreadis TG; Armstrong PM
    J Am Mosq Control Assoc; 2007 Jun; 23(2):137-48. PubMed ID: 17847845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparision of West Nile Virus transmission by Ochlerotatus trivittatus (COQ.), Culex pipiens (L.), and Aedes albopictus (Skuse).
    Tiawsirisup S; Platt KB; Evans RB; Rowley WA
    Vector Borne Zoonotic Dis; 2005; 5(1):40-7. PubMed ID: 15815148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permethrin Susceptibility for the Vector
    Vincent GP; Davis JK; Wimberly MC; Carlson CD; Hildreth MB
    Biomed Res Int; 2018; 2018():2014764. PubMed ID: 30112366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus from female and male mosquitoes (Diptera: Culicidae) in subterranean, ground, and canopy habitats in Connecticut.
    Anderson JF; Andreadis TG; Main AJ; Ferrandino FJ; Vossbrinck CR
    J Med Entomol; 2006 Sep; 43(5):1010-9. PubMed ID: 17017241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA.
    Diuk-Wasser MA; Brown HE; Andreadis TG; Fish D
    Vector Borne Zoonotic Dis; 2006; 6(3):283-95. PubMed ID: 16989568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemic West Nile Virus Infection Rates and Endemic Population Dynamics Among South Dakota Mosquitoes: A 15-yr Study from the United States Northern Great Plains.
    Vincent GP; Davis JK; Wittry MJ; Wimberly MC; Carlson CD; Patton DL; Hildreth MB
    J Med Entomol; 2020 May; 57(3):862-871. PubMed ID: 31799615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal dynamics of four potential West Nile vector species in north-central Texas.
    Bolling BG; Kennedy JH; Zimmerman EG
    J Vector Ecol; 2005 Dec; 30(2):186-94. PubMed ID: 16599151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected spatiotemporal abundance of infected Culex restuans suggest a greater role as a West Nile virus vector for this native species.
    Johnson BJ; Robson MG; Fonseca DM
    Infect Genet Evol; 2015 Apr; 31():40-7. PubMed ID: 25599877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California.
    Elnaiem DE; Kelley K; Wright S; Laffey R; Yoshimura G; Reed M; Goodman G; Thiemann T; Reimer L; Reisen WK; Brown D
    J Med Entomol; 2008 Jul; 45(4):751-7. PubMed ID: 18714879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector competence of Culiseta incidens and Culex thriambus for West Nile virus.
    Reisen WK; Fang Y; Martinez VM
    J Am Mosq Control Assoc; 2006 Dec; 22(4):662-5. PubMed ID: 17304934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.