These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of varied ionic calcium on human adipose-derived stem cell mineralization. McCullen SD; Zhan J; Onorato ML; Bernacki SH; Loboa EG Tissue Eng Part A; 2010 Jun; 16(6):1971-81. PubMed ID: 20088702 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
6. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
7. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration. Park H; Lim DJ; Lee SH; Park H J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624 [TBL] [Abstract][Full Text] [Related]
8. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ J Tissue Eng Regen Med; 2015 Apr; 9(4):389-404. PubMed ID: 23166107 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro. Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136 [TBL] [Abstract][Full Text] [Related]
10. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
12. Tissue engineered plant extracts as nanofibrous wound dressing. Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold. Lee JH; Rhie JW; Oh DY; Ahn ST Biochem Biophys Res Commun; 2008 Jun; 370(3):456-60. PubMed ID: 18395007 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Chen M; Le DQ; Baatrup A; Nygaard JV; Hein S; Bjerre L; Kassem M; Zou X; Bünger C Acta Biomater; 2011 May; 7(5):2244-55. PubMed ID: 21195810 [TBL] [Abstract][Full Text] [Related]
15. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476 [TBL] [Abstract][Full Text] [Related]
16. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
17. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
18. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
19. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. de Paula AC; Zonari AA; Martins TM; Novikoff S; da Silva AR; Correlo VM; Reis RL; Gomes DA; Goes AM Tissue Eng Part A; 2013 Jan; 19(1-2):277-89. PubMed ID: 22920790 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Su WT; Wu PS; Huang TY Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():427-34. PubMed ID: 25492007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]