BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20837023)

  • 1. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.
    Sundar S; McGinness KE; Baker TA; Sauer RT
    J Mol Biol; 2010 Oct; 403(3):420-9. PubMed ID: 20837023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease.
    Burton RE; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2005 Mar; 12(3):245-51. PubMed ID: 15696175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation.
    Sundar S; Baker TA; Sauer RT
    Protein Sci; 2012 Feb; 21(2):188-98. PubMed ID: 22102327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of protein substrate degradation by HslUV.
    Kwon AR; Trame CB; McKay DB
    J Struct Biol; 2004; 146(1-2):141-7. PubMed ID: 15037245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates.
    Hsieh FC; Chen CT; Weng YT; Peng SS; Chen YC; Huang LY; Hu HT; Wu YL; Lin NC; Wu WF
    J Bacteriol; 2011 Oct; 193(19):5465-76. PubMed ID: 21803990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric nucleotide transactions of the HslUV protease.
    Yakamavich JA; Baker TA; Sauer RT
    J Mol Biol; 2008 Jul; 380(5):946-57. PubMed ID: 18582897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation.
    Baytshtok V; Chen J; Glynn SE; Nager AR; Grant RA; Baker TA; Sauer RT
    J Biol Chem; 2017 Apr; 292(14):5695-5704. PubMed ID: 28223361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of double-loop (130~159 aa and 175~209 aa) in ClpY(HslU)-I domain for SulA substrate degradation by ClpYQ(HslUV) protease in Escherichia coli.
    Hsieh FC; Chang LK; Tsai CH; Kuan JE; Wu KF; Wu C; Wu WF
    J Gen Appl Microbiol; 2021 Feb; 66(6):297-306. PubMed ID: 32435002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis.
    Baytshtok V; Fei X; Grant RA; Baker TA; Sauer RT
    Structure; 2016 Oct; 24(10):1766-1777. PubMed ID: 27667691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation.
    Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH
    J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase.
    Park E; Rho YM; Koh OJ; Ahn SW; Seong IS; Song JJ; Bang O; Seol JH; Wang J; Eom SH; Chung CH
    J Biol Chem; 2005 Jun; 280(24):22892-8. PubMed ID: 15849200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system.
    Lien HY; Shy RS; Peng SS; Wu YL; Weng YT; Chen HH; Su PC; Ng WF; Chen YC; Chang PY; Wu WF
    J Bacteriol; 2009 Jul; 191(13):4218-31. PubMed ID: 19395483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis.
    Lee JW; Park E; Jeong MS; Jeon YJ; Eom SH; Seol JH; Chung CH
    J Biol Chem; 2009 Nov; 284(48):33475-84. PubMed ID: 19801685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent.
    Park E; Lee JW; Eom SH; Seol JH; Chung CH
    J Biol Chem; 2008 Nov; 283(48):33258-66. PubMed ID: 18838376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding.
    Erbse AH; Wagner JN; Truscott KN; Spall SK; Kirstein J; Zeth K; Turgay K; Mogk A; Bukau B; Dougan DA
    FEBS J; 2008 Apr; 275(7):1400-1410. PubMed ID: 18279386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP.
    Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):909-14. PubMed ID: 16410355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.