These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20837023)

  • 21. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease.
    Zuromski KL; Kim S; Sauer RT; Baker TA
    J Biol Chem; 2021 Dec; 297(6):101407. PubMed ID: 34780718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examination of the polypeptide substrate specificity for Escherichia coli ClpA.
    Li T; Lucius AL
    Biochemistry; 2013 Jul; 52(29):4941-54. PubMed ID: 23773038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ClpXP, an ATP-powered unfolding and protein-degradation machine.
    Baker TA; Sauer RT
    Biochim Biophys Acta; 2012 Jan; 1823(1):15-28. PubMed ID: 21736903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ClpS is an essential component of the N-end rule pathway in Escherichia coli.
    Erbse A; Schmidt R; Bornemann T; Schneider-Mergener J; Mogk A; Zahn R; Dougan DA; Bukau B
    Nature; 2006 Feb; 439(7077):753-6. PubMed ID: 16467841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Transient π-π or Cation-π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in
    Lin CH; Tsai CH; Chou CC; Wu WF
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the HslU chaperone affinity for HslV protease.
    Azim MK; Goehring W; Song HK; Ramachandran R; Bochtler M; Goettig P
    Protein Sci; 2005 May; 14(5):1357-62. PubMed ID: 15802652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Kraut DA
    J Biol Chem; 2013 Nov; 288(48):34729-35. PubMed ID: 24151080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine.
    Cordova JC; Olivares AO; Shin Y; Stinson BM; Calmat S; Schmitz KR; Aubin-Tam ME; Baker TA; Lang MJ; Sauer RT
    Cell; 2014 Jul; 158(3):647-58. PubMed ID: 25083874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing.
    Kenniston JA; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1390-5. PubMed ID: 15671177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding.
    Bell TA; Baker TA; Sauer RT
    Elife; 2019 Jun; 8():. PubMed ID: 31251172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease.
    Román-Hernández G; Hou JY; Grant RA; Sauer RT; Baker TA
    Mol Cell; 2011 Jul; 43(2):217-28. PubMed ID: 21777811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophage Mu repressor as a target for the Escherichia coli ATP-dependent Clp Protease.
    Laachouch JE; Desmet L; Geuskens V; Grimaud R; Toussaint A
    EMBO J; 1996 Jan; 15(2):437-44. PubMed ID: 8617219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli.
    Chang CY; Weng YT; Hwang LY; Hu HT; Shih PS; Kuan JE; Wu KF; Wu WF
    Microbiol Res; 2019 Mar; 220():21-31. PubMed ID: 30744816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor.
    Defenbaugh DA; Nakai H
    J Biol Chem; 2003 Dec; 278(52):52333-9. PubMed ID: 14559921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanochemical basis of protein degradation by a double-ring AAA+ machine.
    Olivares AO; Nager AR; Iosefson O; Sauer RT; Baker TA
    Nat Struct Mol Biol; 2014 Oct; 21(10):871-5. PubMed ID: 25195048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ClpP N-terminus coordinates substrate access with protease active site reactivity.
    Jennings LD; Bohon J; Chance MR; Licht S
    Biochemistry; 2008 Oct; 47(42):11031-40. PubMed ID: 18816064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multistep substrate binding and engagement by the AAA+ ClpXP protease.
    Saunders RA; Stinson BM; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28005-28013. PubMed ID: 33106413
    [No Abstract]   [Full Text] [Related]  

  • 39. Polypeptide translocation by the AAA+ ClpXP protease machine.
    Barkow SR; Levchenko I; Baker TA; Sauer RT
    Chem Biol; 2009 Jun; 16(6):605-12. PubMed ID: 19549599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.
    Hinnerwisch J; Reid BG; Fenton WA; Horwich AL
    J Biol Chem; 2005 Dec; 280(49):40838-44. PubMed ID: 16207718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.