These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20837144)

  • 41. Preparation and characterization of TAM-loaded HPMC/PAN composite fibers for improving drug-release profiles.
    Shen X; Yu D; Zhang X; Branford-White C; Zhu L
    J Biomater Sci Polym Ed; 2011; 22(16):2227-40. PubMed ID: 21083974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermogravimetric investigation of the hydration behaviour of hydrophilic matrices.
    Segale L; Giovannelli L; Pattarino F; Conti S; Maggi L; Grenier P; Vergnault G
    J Pharm Sci; 2010 Apr; 99(4):2070-9. PubMed ID: 19780132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic understanding of food effects: water diffusivity in gastrointestinal tract is an important parameter for the prediction of disintegration of solid oral dosage forms.
    Radwan A; Ebert S; Amar A; Münnemann K; Wagner M; Amidon GL; Langguth P
    Mol Pharm; 2013 Jun; 10(6):2283-90. PubMed ID: 23600970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of substituted phenols on the sol:gel transition of hydroxypropyl methylcellulose (HPMC) aqueous solutions.
    Banks SR; Pygall SR; Bajwa GS; Doughty SW; Timmins P; Melia CD
    Carbohydr Polym; 2014 Jan; 101():1198-204. PubMed ID: 24299892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of solution calorimetry in investigating controlled-release processes from polymeric drug delivery systems.
    Conti S; Gaisford S; Buckton G; Maggi L; Conte U
    Eur J Pharm Biopharm; 2008 Mar; 68(3):795-801. PubMed ID: 17646092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of drug release from hydroxypropyl methylcellulose (HPMC) matrices: effect of polymer concentration.
    Shah N; Zhang G; Apelian V; Zeng F; Infeld MH; Malick AW
    Pharm Res; 1993 Nov; 10(11):1693-5. PubMed ID: 8290487
    [No Abstract]   [Full Text] [Related]  

  • 47. Drug release from HPMC matrices in milk and fat-rich emulsions.
    Williams HD; Nott KP; Barrett DA; Ward R; Hardy IJ; Melia CD
    J Pharm Sci; 2011 Nov; 100(11):4823-35. PubMed ID: 21766309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microstructural imaging of early gel layer formation in HPMC matrices.
    Bajwa GS; Hoebler K; Sammon C; Timmins P; Melia CD
    J Pharm Sci; 2006 Oct; 95(10):2145-57. PubMed ID: 16871521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Collaboration between HPMC and NaCMC in order to reach the polymer critical point in theophylline hydrophilic matrices.
    Contreras L; Melgoza LM; Aguilar-de-Leyva A; Caraballo I
    ScientificWorldJournal; 2012; 2012():171292. PubMed ID: 22919292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of sugar ester and hydroxypropyl methylcellulose on the physicochemical stability of amorphous cefditoren pivoxil in aqueous suspension.
    Yokoi Y; Yonemochi E; Terada K
    Int J Pharm; 2005 Feb; 290(1-2):91-9. PubMed ID: 15664134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution.
    Ueda K; Higashi K; Kataoka M; Yamashita S; Yamamoto K; Moribe K
    Eur J Pharm Sci; 2014 Oct; 62():293-300. PubMed ID: 24953904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release.
    Joshi SC
    Materials (Basel); 2011 Oct; 4(10):1861-1905. PubMed ID: 28824113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Suppression of agglomeration in fluidized bed coating. III. Hofmeister series in suppression of particle agglomeration.
    Nakano T; Yuasa H; Kanaya Y
    Pharm Res; 1999 Oct; 16(10):1616-20. PubMed ID: 10554106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sucrose esters as natural surfactants in drug delivery systems--a mini-review.
    Szűts A; Szabó-Révész P
    Int J Pharm; 2012 Aug; 433(1-2):1-9. PubMed ID: 22575672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Swelling properties of various polymers used in controlled release systems.
    Vlachou M; Naseef H; Efentakis M; Tarantili PA; Andreopoulos AG
    J Biomater Appl; 2001 Oct; 16(2):125-38. PubMed ID: 11794722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of order of mixing and solute interactions on the "water activity" of concentrated solutions.
    Bone DP; Shannon EL
    Adv Exp Med Biol; 1991; 302():315-36. PubMed ID: 1746338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caffeine dimerization: effects of sugar, salts, and water structure.
    Shimizu S
    Food Funct; 2015 Oct; 6(10):3228-35. PubMed ID: 26222923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solute-polymer-water interactions and their manifestations.
    Chinachoti P; Schmidt SJ
    Adv Exp Med Biol; 1991; 302():561-83. PubMed ID: 1746350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconstitution Properties of Sucrose and Maltodextrins.
    Dupas J; Girard V; Forny L
    Langmuir; 2017 Jan; 33(4):988-995. PubMed ID: 28045268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.