BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 20837491)

  • 1. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis.
    Henique C; Mansouri A; Fumey G; Lenoir V; Girard J; Bouillaud F; Prip-Buus C; Cohen I
    J Biol Chem; 2010 Nov; 285(47):36818-27. PubMed ID: 20837491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes.
    Capel F; Cheraiti N; Acquaviva C; Hénique C; Bertrand-Michel J; Vianey-Saban C; Prip-Buus C; Morio B
    Biochim Biophys Acta; 2016 Dec; 1861(12 Pt A):2000-2010. PubMed ID: 27725263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.
    Vavrova E; Lenoir V; Alves-Guerra MC; Denis RG; Castel J; Esnous C; Dyck JR; Luquet S; Metzger D; Bouillaud F; Prip-Buus C
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E649-60. PubMed ID: 27507552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation.
    Perdomo G; Commerford SR; Richard AM; Adams SH; Corkey BE; O'Doherty RM; Brown NF
    J Biol Chem; 2004 Jun; 279(26):27177-86. PubMed ID: 15105415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oleate Prevents Palmitate-Induced Atrophy via Modulation of Mitochondrial ROS Production in Skeletal Myotubes.
    Lee H; Lim JY; Choi SJ
    Oxid Med Cell Longev; 2017; 2017():2739721. PubMed ID: 28947926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.
    Coll T; Eyre E; Rodríguez-Calvo R; Palomer X; Sánchez RM; Merlos M; Laguna JC; Vázquez-Carrera M
    J Biol Chem; 2008 Apr; 283(17):11107-16. PubMed ID: 18281277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C(2)C(12) myotubes.
    Kadotani A; Tsuchiya Y; Hatakeyama H; Katagiri H; Kanzaki M
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1291-303. PubMed ID: 19755671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.
    Hénique C; Mansouri A; Vavrova E; Lenoir V; Ferry A; Esnous C; Ramond E; Girard J; Bouillaud F; Prip-Buus C; Cohen I
    FASEB J; 2015 Jun; 29(6):2473-83. PubMed ID: 25713059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress.
    Yuzefovych L; Wilson G; Rachek L
    Am J Physiol Endocrinol Metab; 2010 Dec; 299(6):E1096-105. PubMed ID: 20876761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV-protease inhibitors suppress skeletal muscle fatty acid oxidation by reducing CD36 and CPT1 fatty acid transporters.
    Richmond SR; Carper MJ; Lei X; Zhang S; Yarasheski KE; Ramanadham S
    Biochim Biophys Acta; 2010 May; 1801(5):559-66. PubMed ID: 20117238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate.
    Thörn K; Bergsten P
    J Cell Biochem; 2010 Oct; 111(2):497-507. PubMed ID: 20524206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fenofibrate Reverses Palmitate Induced Impairment in Glucose Uptake in Skeletal Muscle Cells by Preventing Cytosolic Ceramide Accumulation.
    Bhattacharjee S; Das N; Mandala A; Mukhopadhyay S; Roy SS
    Cell Physiol Biochem; 2015; 37(4):1315-28. PubMed ID: 26488284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.
    Coll T; Alvarez-Guardia D; Barroso E; Gómez-Foix AM; Palomer X; Laguna JC; Vázquez-Carrera M
    Endocrinology; 2010 Apr; 151(4):1560-9. PubMed ID: 20185762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle.
    Alam N; Saggerson ED
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):233-41. PubMed ID: 9693125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin.
    Kwon B; Querfurth HW
    Biochimie; 2015 Nov; 118():141-50. PubMed ID: 26344902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells.
    Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB
    J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells.
    Sebastián D; Guitart M; García-Martínez C; Mauvezin C; Orellana-Gavaldà JM; Serra D; Gómez-Foix AM; Hegardt FG; Asins G
    J Lipid Res; 2009 Sep; 50(9):1789-99. PubMed ID: 19429947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations.
    Bergouignan A; Momken I; Lefai E; Antoun E; Schoeller DA; Platat C; Chery I; Zahariev A; Vidal H; Gabert L; Normand S; Freyssenet D; Laville M; Simon C; Blanc S
    Am J Clin Nutr; 2013 Sep; 98(3):648-58. PubMed ID: 23902784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.