BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20837697)

  • 1. Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner.
    Kranich J; Krautler NJ; Falsig J; Ballmer B; Li S; Hutter G; Schwarz P; Moos R; Julius C; Miele G; Aguzzi A
    J Exp Med; 2010 Sep; 207(10):2271-81. PubMed ID: 20837697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8.
    Spittau B; Rilka J; Steinfath E; Zöller T; Krieglstein K
    Glia; 2015 Jan; 63(1):142-53. PubMed ID: 25130376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement 3
    Hartmann K; Sepulveda-Falla D; Rose IVL; Madore C; Muth C; Matschke J; Butovsky O; Liddelow S; Glatzel M; Krasemann S
    Acta Neuropathol Commun; 2019 May; 7(1):83. PubMed ID: 31118110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow Cytometric Detection of PrP
    Yamasaki T; Suzuki A; Hasebe R; Horiuchi M
    J Virol; 2018 Jan; 92(1):. PubMed ID: 29046463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory response of microglia to prions is controlled by sialylation of PrP
    Srivastava S; Katorcha E; Makarava N; Barrett JP; Loane DJ; Baskakov IV
    Sci Rep; 2018 Jul; 8(1):11326. PubMed ID: 30054538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype.
    Pankiewicz JE; Lizińczyk AM; Franco LA; Diaz JR; Martá-Ariza M; Sadowski MJ
    Acta Neuropathol Commun; 2021 Sep; 9(1):157. PubMed ID: 34565486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation.
    Hughes MM; Field RH; Perry VH; Murray CL; Cunningham C
    Glia; 2010 Dec; 58(16):2017-30. PubMed ID: 20878768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile prion replication assay in organotypic brain slices.
    Falsig J; Julius C; Margalith I; Schwarz P; Heppner FL; Aguzzi A
    Nat Neurosci; 2008 Jan; 11(1):109-17. PubMed ID: 18066056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation.
    Sakai K; Hasebe R; Takahashi Y; Song CH; Suzuki A; Yamasaki T; Horiuchi M
    J Virol; 2013 Dec; 87(24):13433-45. PubMed ID: 24089559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remarkable increases of α1-antichymotrypsin in brain tissues of rodents during prion infection.
    Chen C; Xu XF; Zhang RQ; Ma Y; Lv Y; Li JL; Shi Q; Xiao K; Sun J; Yang XD; Shi Q; Dong XP
    Prion; 2017 Sep; 11(5):338-351. PubMed ID: 28956708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unaltered prion disease in mice lacking developmental endothelial locus-1.
    Zhu C; Li Z; Li B; Pfammatter M; Hornemann S; Aguzzi A
    Neurobiol Aging; 2019 Apr; 76():208-213. PubMed ID: 30743056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.
    Howangyin KY; Zlatanova I; Pinto C; Ngkelo A; Cochain C; Rouanet M; Vilar J; Lemitre M; Stockmann C; Fleischmann BK; Mallat Z; Silvestre JS
    Circulation; 2016 Mar; 133(9):826-39. PubMed ID: 26819373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease.
    Kinugawa K; Monnet Y; Lu L; Bekaert AJ; Théry C; Mallat Z; Hirsch EC; Hunot S
    Neurobiol Dis; 2013 Mar; 51():192-201. PubMed ID: 23194669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically induced accumulation of GAGs delays PrP(Sc) clearance but prolongs prion disease incubation time.
    Mayer-Sonnenfeld T; Avrahami D; Friedman-Levi Y; Gabizon R
    Cell Mol Neurobiol; 2008 Nov; 28(7):1005-15. PubMed ID: 18350378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact.
    Victoria GS; Arkhipenko A; Zhu S; Syan S; Zurzolo C
    Sci Rep; 2016 Feb; 6():20762. PubMed ID: 26857744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular signatures in prion disease: altered death receptor pathways in a mouse model.
    Giri RK
    J Transl Med; 2024 May; 22(1):503. PubMed ID: 38802941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells.
    Stanton JB; Knowles DP; O'Rourke KI; Herrmann-Hoesing LM; Mathison BA; Baszler TV
    J Virol; 2008 Oct; 82(20):9839-47. PubMed ID: 18684809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species.
    Mays CE; van der Merwe J; Kim C; Haldiman T; McKenzie D; Safar JG; Westaway D
    J Virol; 2015 Dec; 89(24):12418-26. PubMed ID: 26423957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion protein functions and dysfunction in prion diseases.
    Sakudo A; Ikuta K
    Curr Med Chem; 2009; 16(3):380-9. PubMed ID: 19149584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systems approach to prion disease.
    Hwang D; Lee IY; Yoo H; Gehlenborg N; Cho JH; Petritis B; Baxter D; Pitstick R; Young R; Spicer D; Price ND; Hohmann JG; Dearmond SJ; Carlson GA; Hood LE
    Mol Syst Biol; 2009; 5():252. PubMed ID: 19308092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.