These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20837697)

  • 1. Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner.
    Kranich J; Krautler NJ; Falsig J; Ballmer B; Li S; Hutter G; Schwarz P; Moos R; Julius C; Miele G; Aguzzi A
    J Exp Med; 2010 Sep; 207(10):2271-81. PubMed ID: 20837697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8.
    Spittau B; Rilka J; Steinfath E; Zöller T; Krieglstein K
    Glia; 2015 Jan; 63(1):142-53. PubMed ID: 25130376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement 3
    Hartmann K; Sepulveda-Falla D; Rose IVL; Madore C; Muth C; Matschke J; Butovsky O; Liddelow S; Glatzel M; Krasemann S
    Acta Neuropathol Commun; 2019 May; 7(1):83. PubMed ID: 31118110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow Cytometric Detection of PrP
    Yamasaki T; Suzuki A; Hasebe R; Horiuchi M
    J Virol; 2018 Jan; 92(1):. PubMed ID: 29046463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory response of microglia to prions is controlled by sialylation of PrP
    Srivastava S; Katorcha E; Makarava N; Barrett JP; Loane DJ; Baskakov IV
    Sci Rep; 2018 Jul; 8(1):11326. PubMed ID: 30054538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype.
    Pankiewicz JE; Lizińczyk AM; Franco LA; Diaz JR; Martá-Ariza M; Sadowski MJ
    Acta Neuropathol Commun; 2021 Sep; 9(1):157. PubMed ID: 34565486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation.
    Hughes MM; Field RH; Perry VH; Murray CL; Cunningham C
    Glia; 2010 Dec; 58(16):2017-30. PubMed ID: 20878768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile prion replication assay in organotypic brain slices.
    Falsig J; Julius C; Margalith I; Schwarz P; Heppner FL; Aguzzi A
    Nat Neurosci; 2008 Jan; 11(1):109-17. PubMed ID: 18066056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation.
    Sakai K; Hasebe R; Takahashi Y; Song CH; Suzuki A; Yamasaki T; Horiuchi M
    J Virol; 2013 Dec; 87(24):13433-45. PubMed ID: 24089559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remarkable increases of α1-antichymotrypsin in brain tissues of rodents during prion infection.
    Chen C; Xu XF; Zhang RQ; Ma Y; Lv Y; Li JL; Shi Q; Xiao K; Sun J; Yang XD; Shi Q; Dong XP
    Prion; 2017 Sep; 11(5):338-351. PubMed ID: 28956708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unaltered prion disease in mice lacking developmental endothelial locus-1.
    Zhu C; Li Z; Li B; Pfammatter M; Hornemann S; Aguzzi A
    Neurobiol Aging; 2019 Apr; 76():208-213. PubMed ID: 30743056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.
    Howangyin KY; Zlatanova I; Pinto C; Ngkelo A; Cochain C; Rouanet M; Vilar J; Lemitre M; Stockmann C; Fleischmann BK; Mallat Z; Silvestre JS
    Circulation; 2016 Mar; 133(9):826-39. PubMed ID: 26819373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease.
    Kinugawa K; Monnet Y; Lu L; Bekaert AJ; Théry C; Mallat Z; Hirsch EC; Hunot S
    Neurobiol Dis; 2013 Mar; 51():192-201. PubMed ID: 23194669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically induced accumulation of GAGs delays PrP(Sc) clearance but prolongs prion disease incubation time.
    Mayer-Sonnenfeld T; Avrahami D; Friedman-Levi Y; Gabizon R
    Cell Mol Neurobiol; 2008 Nov; 28(7):1005-15. PubMed ID: 18350378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact.
    Victoria GS; Arkhipenko A; Zhu S; Syan S; Zurzolo C
    Sci Rep; 2016 Feb; 6():20762. PubMed ID: 26857744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular signatures in prion disease: altered death receptor pathways in a mouse model.
    Giri RK
    J Transl Med; 2024 May; 22(1):503. PubMed ID: 38802941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells.
    Stanton JB; Knowles DP; O'Rourke KI; Herrmann-Hoesing LM; Mathison BA; Baszler TV
    J Virol; 2008 Oct; 82(20):9839-47. PubMed ID: 18684809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species.
    Mays CE; van der Merwe J; Kim C; Haldiman T; McKenzie D; Safar JG; Westaway D
    J Virol; 2015 Dec; 89(24):12418-26. PubMed ID: 26423957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion protein functions and dysfunction in prion diseases.
    Sakudo A; Ikuta K
    Curr Med Chem; 2009; 16(3):380-9. PubMed ID: 19149584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systems approach to prion disease.
    Hwang D; Lee IY; Yoo H; Gehlenborg N; Cho JH; Petritis B; Baxter D; Pitstick R; Young R; Spicer D; Price ND; Hohmann JG; Dearmond SJ; Carlson GA; Hood LE
    Mol Syst Biol; 2009; 5():252. PubMed ID: 19308092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.