These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 20837997)
1. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997 [TBL] [Abstract][Full Text] [Related]
2. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. Oda S; Tomioka M; Iino Y J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368 [TBL] [Abstract][Full Text] [Related]
3. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Ortiz CO; Faumont S; Takayama J; Ahmed HK; Goldsmith AD; Pocock R; McCormick KE; Kunimoto H; Iino Y; Lockery S; Hobert O Curr Biol; 2009 Jun; 19(12):996-1004. PubMed ID: 19523832 [TBL] [Abstract][Full Text] [Related]
4. The redundancy and diversity between two novel PKC isotypes that regulate learning in Hiroki S; Iino Y Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35027448 [TBL] [Abstract][Full Text] [Related]
6. A Gustatory Neural Circuit of Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744 [TBL] [Abstract][Full Text] [Related]
7. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Tomioka M; Adachi T; Suzuki H; Kunitomo H; Schafer WR; Iino Y Neuron; 2006 Sep; 51(5):613-25. PubMed ID: 16950159 [TBL] [Abstract][Full Text] [Related]
8. Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans. Huang T; Suzuki K; Kunitomo H; Tomioka M; Iino Y G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37310929 [TBL] [Abstract][Full Text] [Related]
9. Multiple sensory neurons mediate starvation-dependent aversive navigation in Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735 [TBL] [Abstract][Full Text] [Related]
10. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes. Tomioka M; Jang MS; Iino Y Commun Biol; 2022 Jan; 5(1):30. PubMed ID: 35017611 [TBL] [Abstract][Full Text] [Related]
11. Antagonistic regulation of salt and sugar chemotaxis plasticity by a single chemosensory neuron in Caenorhabditis elegans. Tomioka M; Umemura Y; Ueoka Y; Chin R; Katae K; Uchiyama C; Ike Y; Iino Y PLoS Genet; 2023 Sep; 19(9):e1010637. PubMed ID: 37669262 [TBL] [Abstract][Full Text] [Related]
12. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Pierce-Shimomura JT; Faumont S; Gaston MR; Pearson BJ; Lockery SR Nature; 2001 Apr; 410(6829):694-8. PubMed ID: 11287956 [TBL] [Abstract][Full Text] [Related]
13. Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans. Iwata R; Oda S; Kunitomo H; Iino Y Proc Natl Acad Sci U S A; 2011 May; 108(18):7589-94. PubMed ID: 21502506 [TBL] [Abstract][Full Text] [Related]
14. A model of chemotaxis and associative learning in C. elegans. Appleby PA Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944 [TBL] [Abstract][Full Text] [Related]
15. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Suzuki H; Thiele TR; Faumont S; Ezcurra M; Lockery SR; Schafer WR Nature; 2008 Jul; 454(7200):114-7. PubMed ID: 18596810 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of Presynaptic Diacylglycerol in a Sensory Neuron Encode Differences between Past and Current Stimulus Intensity. Ohno H; Sakai N; Adachi T; Iino Y Cell Rep; 2017 Sep; 20(10):2294-2303. PubMed ID: 28877465 [TBL] [Abstract][Full Text] [Related]
17. The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. Esposito G; Amoroso MR; Bergamasco C; Di Schiavi E; Bazzicalupo P BMC Biol; 2010 Nov; 8():138. PubMed ID: 21070627 [TBL] [Abstract][Full Text] [Related]
18. Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Hiroki S; Yoshitane H; Mitsui H; Sato H; Umatani C; Kanda S; Fukada Y; Iino Y Nat Commun; 2022 May; 13(1):2928. PubMed ID: 35624091 [TBL] [Abstract][Full Text] [Related]
19. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y Nat Commun; 2013; 4():2210. PubMed ID: 23887678 [TBL] [Abstract][Full Text] [Related]
20. Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans. Smith HK; Luo L; O'Halloran D; Guo D; Huang XY; Samuel AD; Hobert O Genetics; 2013 Aug; 194(4):885-901. PubMed ID: 23695300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]