BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20838449)

  • 41. Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP.
    Tárrega C; Blanco-Aparicio C; Muñoz JJ; Pulido R
    J Biol Chem; 2002 Jan; 277(4):2629-36. PubMed ID: 11711538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family.
    Cadwallader AB; Yost HJ
    Dev Dyn; 2006 Dec; 235(12):3432-7. PubMed ID: 17075883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression.
    Liu RZ; Sharma MK; Sun Q; Thisse C; Thisse B; Denovan-Wright EM; Wright JM
    FEBS J; 2005 Jul; 272(14):3561-71. PubMed ID: 16008556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery.
    Burke TR; Zhang ZY
    Biopolymers; 1998; 47(3):225-41. PubMed ID: 9817026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.
    Chen WL; Harris DL; Joyce NC
    Exp Eye Res; 2005 Nov; 81(5):570-80. PubMed ID: 15950220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studying Protein-Tyrosine Phosphatases in Zebrafish.
    Hale AJ; den Hertog J
    Methods Mol Biol; 2016; 1447():351-72. PubMed ID: 27514815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced expression of multiple protein tyrosine phosphatases in the regenerating mouse liver: isolation of PTP-RL10, a novel cytoplasmic-type phosphatase with sequence homology to cytoskeletal protein 4.1.
    Higashitsuji H; Arii S; Furutani M; Imamura M; Kaneko Y; Takenawa J; Nakayama H; Fujita J
    Oncogene; 1995 Jan; 10(2):407-14. PubMed ID: 7838537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and expression patterns of the MAPK family in zebrafish.
    Krens SF; He S; Spaink HP; Snaar-Jagalska BE
    Gene Expr Patterns; 2006 Oct; 6(8):1019-26. PubMed ID: 16774848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and chromosomal localization of PTP-NP-2, a new isoform of protein tyrosine phosphatase-like receptor, expressed on synaptic boutons.
    Jiang S; Tulloch AG; Kim TA; Fu Y; Rogers R; Gaskell A; White RA; Avraham H; Avraham S
    Gene; 1998 Jul; 215(2):345-59. PubMed ID: 9714834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases.
    Miller DT; Read R; Rusconi J; Cagan RL
    Gene; 2000 Feb; 243(1-2):1-9. PubMed ID: 10675607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale structural analysis of the classical human protein tyrosine phosphatome.
    Barr AJ; Ugochukwu E; Lee WH; King ON; Filippakopoulos P; Alfano I; Savitsky P; Burgess-Brown NA; Müller S; Knapp S
    Cell; 2009 Jan; 136(2):352-63. PubMed ID: 19167335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic alterations of protein tyrosine phosphatases in human cancers.
    Zhao S; Sedwick D; Wang Z
    Oncogene; 2015 Jul; 34(30):3885-94. PubMed ID: 25263441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants.
    Sumanas S; Jorniak T; Lin S
    Blood; 2005 Jul; 106(2):534-41. PubMed ID: 15802528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular biochemistry methods for investigating protein tyrosine phosphatases.
    Stanford SM; Ahmed V; Barrios AM; Bottini N
    Antioxid Redox Signal; 2014 May; 20(14):2160-78. PubMed ID: 24294920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on "substrate-trapping" mutants.
    Wälchli S; Curchod ML; Gobert RP; Arkinstall S; Hooft van Huijsduijnen R
    J Biol Chem; 2000 Mar; 275(13):9792-6. PubMed ID: 10734133
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition.
    Guo XL; Shen K; Wang F; Lawrence DS; Zhang ZY
    J Biol Chem; 2002 Oct; 277(43):41014-22. PubMed ID: 12193602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of novel protein tyrosine phosphatases of hematopoietic cells by polymerase chain reaction amplification.
    Yi T; Cleveland JL; Ihle JN
    Blood; 1991 Nov; 78(9):2222-8. PubMed ID: 1932742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein tyrosine phosphatases, new targets for cancer therapy.
    Easty D; Gallagher W; Bennett DC
    Curr Cancer Drug Targets; 2006 Sep; 6(6):519-32. PubMed ID: 17017875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis.
    Adams J; Thornton BP; Tabernero L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases.
    Fukada M; Noda M
    Methods Mol Biol; 2007; 365():371-82. PubMed ID: 17200575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.