These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 20838789)

  • 1. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass.
    Kim JH; Block DE; Mills DA
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1077-85. PubMed ID: 20838789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 3. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Metabolic engineering for the efficient co-utilization of glucose and xylose].
    Wang Q; Gao J; Zhou Y
    Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2710-2730. PubMed ID: 39174478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4.
    Noguchi T; Tashiro Y; Yoshida T; Zheng J; Sakai K; Sonomoto K
    J Biosci Bioeng; 2013 Dec; 116(6):716-21. PubMed ID: 23809630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
    Lee BD; Apel WA; DeVeaux LC; Sheridan PP
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain.
    Dev C; Jilani SB; Yazdani SS
    Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process.
    Ferone M; Raganati F; Olivieri G; Salatino P; Marzocchella A
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1465-1477. PubMed ID: 28540516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.
    Oreb M; Dietz H; Farwick A; Boles E
    Bioengineered; 2012; 3(6):347-51. PubMed ID: 22892590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
    Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering applications to renewable resource utilization.
    Aristidou A; Penttilä M
    Curr Opin Biotechnol; 2000 Apr; 11(2):187-98. PubMed ID: 10753763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.