These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20838855)
61. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments. Atreya HS; Eletsky A; Szyperski T J Am Chem Soc; 2005 Apr; 127(13):4554-5. PubMed ID: 15796503 [TBL] [Abstract][Full Text] [Related]
62. 4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins. Krähenbühl B; Hiller S; Wider G J Biomol NMR; 2011 Nov; 51(3):313-8. PubMed ID: 21947871 [TBL] [Abstract][Full Text] [Related]
63. Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. Eletsky A; Atreya HS; Liu G; Szyperski T J Am Chem Soc; 2005 Oct; 127(42):14578-9. PubMed ID: 16231903 [TBL] [Abstract][Full Text] [Related]
64. Understanding and solving abnormal peak splitting in 3D HCCH-TOCSY and HCC(CO)NH-TOCSY. Xia Y; Yuwen T; Rossi P J Biomol NMR; 2020 May; 74(4-5):213-221. PubMed ID: 32240470 [TBL] [Abstract][Full Text] [Related]
65. Transverse relaxation optimized 3D and 4D 15n/15N separated NOESY experiments of 15N labeled proteins. Xia Y; Sze K; Zhu G J Biomol NMR; 2000 Nov; 18(3):261-8. PubMed ID: 11142516 [TBL] [Abstract][Full Text] [Related]
66. An isotope labeling strategy for methyl TROSY spectroscopy. Tugarinov V; Kay LE J Biomol NMR; 2004 Feb; 28(2):165-72. PubMed ID: 14755160 [TBL] [Abstract][Full Text] [Related]
67. Backbone and sidechain methyl Ile (δ1), Leu and Val chemical shift assignments of RDE-4 (1-243), an RNA interference initiation protein in C. elegans. Chiliveri SC; Kumar S; Marelli UK; Deshmukh MV Biomol NMR Assign; 2012 Oct; 6(2):143-6. PubMed ID: 22002349 [TBL] [Abstract][Full Text] [Related]
68. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Goto NK; Gardner KH; Mueller GA; Willis RC; Kay LE J Biomol NMR; 1999 Apr; 13(4):369-74. PubMed ID: 10383198 [TBL] [Abstract][Full Text] [Related]
69. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. Venditti V; Fawzi NL; Clore GM J Biomol NMR; 2011 Nov; 51(3):319-28. PubMed ID: 21935714 [TBL] [Abstract][Full Text] [Related]
70. Simplification of protein NOESY spectra using bioorganic precursor synthesis and NMR spectral editing. Lichtenecker R; Ludwiczek ML; Schmid W; Konrat R J Am Chem Soc; 2004 May; 126(17):5348-9. PubMed ID: 15113192 [TBL] [Abstract][Full Text] [Related]
71. Detection of intermolecular transferred NOEs in large protein complexes using asymmetric deuteration: HIV-1 gp120 in complex with a CCR5 peptide. Srivastava G; Moseri A; Kessler N; Akabayov SR; Arshava B; Naider F; Anglister J FEBS J; 2016 Nov; 283(22):4084-4096. PubMed ID: 27701820 [TBL] [Abstract][Full Text] [Related]
72. NMR protein structure determination in living E. coli cells using nonlinear sampling. Ikeya T; Sasaki A; Sakakibara D; Shigemitsu Y; Hamatsu J; Hanashima T; Mishima M; Yoshimasu M; Hayashi N; Mikawa T; Nietlispach D; Wälchli M; Smith BO; Shirakawa M; Güntert P; Ito Y Nat Protoc; 2010 Jun; 5(6):1051-60. PubMed ID: 20539281 [TBL] [Abstract][Full Text] [Related]
73. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. Motáčková V; Nováček J; Zawadzka-Kazimierczuk A; Kazimierczuk K; Zídek L; Sanderová H; Krásný L; Koźmiński W; Sklenář V J Biomol NMR; 2010 Nov; 48(3):169-77. PubMed ID: 20890634 [TBL] [Abstract][Full Text] [Related]
74. Detection of intermolecular NOE interactions in large protein complexes. Anglister J; Srivastava G; Naider F Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839 [TBL] [Abstract][Full Text] [Related]
76. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. Ding K; Gronenborn AM J Magn Reson; 2002 Jun; 156(2):262-8. PubMed ID: 12165262 [TBL] [Abstract][Full Text] [Related]
77. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. Herrmann T; Güntert P; Wüthrich K J Biomol NMR; 2002 Nov; 24(3):171-89. PubMed ID: 12522306 [TBL] [Abstract][Full Text] [Related]
78. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. Kim S; Szyperski T J Am Chem Soc; 2003 Feb; 125(5):1385-93. PubMed ID: 12553842 [TBL] [Abstract][Full Text] [Related]
79. Backbone and sidechain methyl Ile (delta1), Leu and Val resonance assignments of the catalytic domain of the yeast mRNA decapping enzyme, Dcp2. Deshmukh MV; Oku Y; Gross JD Biomol NMR Assign; 2007 Jul; 1(1):17-8. PubMed ID: 19636815 [TBL] [Abstract][Full Text] [Related]
80. GFT NMR experiments for polypeptide backbone and 13Cbeta chemical shift assignment. Kim S; Szyperski T J Biomol NMR; 2004 Feb; 28(2):117-30. PubMed ID: 14755156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]