These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20839255)

  • 1. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing.
    Pei H; Lu N; Wen Y; Song S; Liu Y; Yan H; Fan C
    Adv Mater; 2010 Nov; 22(42):4754-8. PubMed ID: 20839255
    [No Abstract]   [Full Text] [Related]  

  • 2. Impedimetric determination of Staphylococcal enterotoxin B using electrochemical switching with DNA triangular pyramid frustum nanostructure.
    Chen X; Shi X; Liu Y; Lu L; Lu Y; Xiong X; Liu Y; Xiong X
    Mikrochim Acta; 2018 Sep; 185(10):460. PubMed ID: 30219956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved sensitivity for the electrochemical biosensor with an adjunct probe.
    Yang K; Zhang CY
    Anal Chem; 2010 Nov; 82(22):9500-5. PubMed ID: 20979391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment.
    Wang Q; Gao F; Ni J; Liao X; Zhang X; Lin Z
    Sci Rep; 2016 Mar; 6():22441. PubMed ID: 26931160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant.
    Wu F; Lin Q; Wang L; Zou Y; Chen M; Xia Y; Lan J; Chen J
    Talanta; 2020 Jan; 207():120257. PubMed ID: 31594620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical DNA sensor without electrode pre-modification.
    Hong N; Cheng L; Wei B; Chen C; He LL; Kong D; Ceng J; Cui HF; Fan H
    Biosens Bioelectron; 2017 May; 91():110-114. PubMed ID: 28011414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single molecule based SNP detection using designed DNA carriers and solid-state nanopores.
    Kong J; Zhu J; Keyser UF
    Chem Commun (Camb); 2016 Dec; 53(2):436-439. PubMed ID: 27965988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE; Mehrgardi MA
    Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on Dual-Hairpin DNA structure.
    He X; Wang G; Xu G; Zhu Y; Chen L; Zhang X
    Langmuir; 2013 Nov; 29(46):14328-34. PubMed ID: 24079405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform.
    Lin M; Song P; Zhou G; Zuo X; Aldalbahi A; Lou X; Shi J; Fan C
    Nat Protoc; 2016 Jul; 11(7):1244-63. PubMed ID: 27310264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor.
    Chen YX; Huang KJ; He LL; Wang YH
    Biosens Bioelectron; 2018 Feb; 100():274-281. PubMed ID: 28942209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W; Lai RY
    Chem Commun (Camb); 2012 Sep; 48(69):8703-5. PubMed ID: 22825042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.
    Dong S; Zhao R; Zhu J; Lu X; Li Y; Qiu S; Jia L; Jiao X; Song S; Fan C; Hao R; Song H
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8834-42. PubMed ID: 25844798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical DNA sensor based on polyaniline/graphene: high sensitivity to DNA sequences in a wide range.
    Zheng Q; Wu H; Shen Z; Gao W; Yu Y; Ma Y; Guang W; Guo Q; Yan R; Wang J; Ding K
    Analyst; 2015 Oct; 140(19):6660-70. PubMed ID: 26309910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry.
    Gorodetsky AA; Green O; Yavin E; Barton JK
    Bioconjug Chem; 2007; 18(5):1434-41. PubMed ID: 17580927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers.
    Kuralay F; Campuzano S; Wang J
    Talanta; 2012 Sep; 99():155-60. PubMed ID: 22967535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure.
    Tian R; Ning W; Chen M; Zhang C; Li Q; Bai J
    Talanta; 2019 Mar; 194():273-281. PubMed ID: 30609531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opto-electrochemical nanosensor array for remote DNA detection.
    Deiss F; Laurent S; Descamps E; Livache T; Sojic N
    Analyst; 2011 Jan; 136(2):327-31. PubMed ID: 20944861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA.
    Zhang Y; Zheng B; Zhu C; Zhang X; Tan C; Li H; Chen B; Yang J; Chen J; Huang Y; Wang L; Zhang H
    Adv Mater; 2015 Feb; 27(5):935-9. PubMed ID: 25504749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.