BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20839264)

  • 1. Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture.
    Benigni M; Bompeix G
    Pest Manag Sci; 2010 Dec; 66(12):1332-6. PubMed ID: 20839264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and biological characterization of Sclerotinia sclerotiorum resistant to the anilinopyrimidine fungicide cyprodinil.
    Hou YP; Mao XW; Qu XP; Wang JX; Chen CJ; Zhou MG
    Pestic Biochem Physiol; 2018 Apr; 146():80-89. PubMed ID: 29626996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of vinclozolin, thiabendazole and dimethomorph during storage, handling and forcing of chicory.
    Spanoghe P; Ryckaert B; Van Gheluwe C; Van Labeke MC
    Pest Manag Sci; 2010 Feb; 66(2):126-31. PubMed ID: 19746400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Biosanitation by Application of Coniothyrium minitans on Sclerotinia sclerotiorum-Infected Crops.
    Gerlagh M; Goossen-van de Geijn HM; Fokkema NJ; Vereijken PF
    Phytopathology; 1999 Feb; 89(2):141-7. PubMed ID: 18944788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum.
    Xu C; Hou Y; Wang J; Yang G; Liang X; Zhou M
    Pestic Biochem Physiol; 2014 Oct; 115():32-8. PubMed ID: 25307463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains.
    Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC
    Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorum.
    Duan Y; Li T; Xiao X; Wu J; Li S; Wang J; Zhou M
    Pestic Biochem Physiol; 2018 Jul; 149():61-66. PubMed ID: 30033017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and Chemical Control of Sclerotinia sclerotiorum using Stachybotrys levispora and Its Secondary Metabolite Griseofulvin.
    Ribeiro AI; Costa ES; Thomasi SS; Brandão DFR; Vieira PC; Fernandes JB; Forim MR; Ferreira AG; Pascholati SF; Gusmão LFP; da Silva MFDGF
    J Agric Food Chem; 2018 Jul; 66(29):7627-7632. PubMed ID: 29944364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventive and Curative Effects of Treatments to Manage Strawberry Root and Crown Rot Caused by
    Acosta-González U; Leyva-Mir SG; Silva-Rojas HV; Rebollar-Alviter A
    Plant Dis; 2024 May; 108(5):1278-1288. PubMed ID: 38012823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological control of Botrytis gray mould and Sclerotinia drop in lettuce.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2005; 70(3):157-68. PubMed ID: 16637171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.
    Yang F; Abdelnabby H; Xiao Y
    Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring for resistance to fungicides in Botrytis cinerea and Sclerotinia sclerotiorum, the pathogens of sweet basil.
    Korolev N; Mamiev M; Elad Y
    Commun Agric Appl Biol Sci; 2010; 75(4):705-7. PubMed ID: 21534480
    [No Abstract]   [Full Text] [Related]  

  • 13. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum.
    Hou YP; Mao XW; Lin SP; Song XS; Duan YB; Wang JX; Zhou MG
    Pestic Biochem Physiol; 2018 Feb; 145():22-28. PubMed ID: 29482728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for Integrated Control of Sclerotinia sclerotiorum in Glasshouse Lettuce Using Coniothyrium minitans and Reduced Fungicide Application.
    Budge SP; Whipps JM
    Phytopathology; 2001 Feb; 91(2):221-7. PubMed ID: 18944397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-germinated conidia of Coniothyrium minitans enhances the foliar biological control of Sclerotinia sclerotiorum.
    Shi J; Li Y; Qian H; Du G; Chen J
    Biotechnol Lett; 2004 Nov; 26(21):1649-52. PubMed ID: 15604814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluxapyroxad Resistance Mechanisms in
    Wang Y; Lu N; Wang K; Li Y; Zhang M; Liu S; Li Y; Zhou F
    Plant Dis; 2023 Apr; 107(4):1035-1043. PubMed ID: 36058635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanism of
    Wang Q; Mao Y; Li S; Li T; Wang J; Zhou M; Duan Y
    J Agric Food Chem; 2022 Jun; 70(23):7039-7048. PubMed ID: 35666187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Potential Mechanism of Pydiflumetofen Resistance in
    Zhou F; Cui YX; Ma YH; Wang JY; Hu HY; Li SW; Zhang FL; Li CW
    Plant Dis; 2021 Nov; 105(11):3580-3585. PubMed ID: 33934629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing.
    de Vrije T; Antoine N; Buitelaar RM; Bruckner S; Dissevelt M; Durand A; Gerlagh M; Jones EE; Lüth P; Oostra J; Ravensberg WJ; Renaud R; Rinzema A; Weber FJ; Whipps JM
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):58-68. PubMed ID: 11499948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal Activity and Biological Characteristics of the Novel Fungicide Quinofumelin Against
    Tao X; Zhao H; Xu H; Li Z; Wang J; Song X; Zhou M; Duan Y
    Plant Dis; 2021 Sep; 105(9):2567-2574. PubMed ID: 33404275
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.