BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20839831)

  • 1. Pore size control of ultrathin silicon membranes by rapid thermal carbonization.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nano Lett; 2010 Oct; 10(10):3904-8. PubMed ID: 20839831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
    Gaborski TR; Snyder JL; Striemer CC; Fang DZ; Hoffman M; Fauchet PM; McGrath JL
    ACS Nano; 2010 Nov; 4(11):6973-81. PubMed ID: 21043434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
    Qi C; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2015 Feb; 26(5):055706. PubMed ID: 25590751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.
    Qi C; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Small; 2014 Jul; 10(14):2946-53. PubMed ID: 24623562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
    DesOrmeaux JP; Winans JD; Wayson SE; Gaborski TR; Khire TS; Striemer CC; McGrath JL
    Nanoscale; 2014 Sep; 6(18):10798-805. PubMed ID: 25105590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes.
    Snyder JL; Clark A; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; McGrath JL
    J Memb Sci; 2011 Mar; 369(1-2):119-129. PubMed ID: 21297879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
    Agrawal AA; Nehilla BJ; Reisig KV; Gaborski TR; Fang DZ; Striemer CC; Fauchet PM; McGrath JL
    Biomaterials; 2010 Jul; 31(20):5408-17. PubMed ID: 20398927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin silicon membranes for wearable dialysis.
    Johnson DG; Khire TS; Lyubarskaya YL; Smith KJ; Desormeaux JP; Taylor JG; Gaborski TR; Shestopalov AA; Striemer CC; McGrath JL
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):508-15. PubMed ID: 24206603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superpermeable Atomic-Thin Graphene Membranes with High Selectivity.
    Wei G; Quan X; Chen S; Yu H
    ACS Nano; 2017 Feb; 11(2):1920-1926. PubMed ID: 28169524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile ultrathin nanoporous silicon nitride membranes.
    Vlassiouk I; Apel PY; Dmitriev SN; Healy K; Siwy ZS
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21039-44. PubMed ID: 19948951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic and non-ballistic gas flow through ultrathin nanopores.
    Kavalenka MN; Striemer CC; Fang DZ; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2012 Apr; 23(14):145706. PubMed ID: 22433182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure Evolution and Its Correlation with Performance in Nitrogen-Containing Porous Carbon Prepared by Polypyrrole Carbonization: Insights from Hybrid Calculations.
    Li S; Bian F; Wu X; Sun L; Yang H; Meng X; Qin G
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite.
    Kolhatkar G; Boucherif A; Boucherif AR; Dupuy A; Fréchette LG; Arès R; Ruediger A
    Nanotechnology; 2018 Apr; 29(14):145701. PubMed ID: 29388555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation.
    Zhu Y; Gao S; Hu L; Jin J
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13607-14. PubMed ID: 27177239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of the pore formation in single layer graphene oxide by a thermal reduction process.
    Raffone F; Savazzi F; Cicero G
    Phys Chem Chem Phys; 2021 May; 23(20):11831-11836. PubMed ID: 33988195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction.
    Sciacca B; Alvarez SD; Geobaldo F; Sailor MJ
    Dalton Trans; 2010 Dec; 39(45):10847-53. PubMed ID: 20967329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial vacuolization induced by highly permeable silicon membranes.
    Nehilla BJ; Nataraj N; Gaborski TR; McGrath JL
    Acta Biomater; 2014 Nov; 10(11):4670-4677. PubMed ID: 25072618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.