These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20839939)

  • 41. Variation in barley yellow dwarf virus transmission efficiency by Rhopalosiphum padi (Homoptera: Aphididae) after acquisition from transgenic and nontransformed wheat genotypes.
    Jiménez-Martínez ES; Bosque-Pérez NA
    J Econ Entomol; 2004 Dec; 97(6):1790-6. PubMed ID: 15666729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The satellite RNA of barley yellow dwarf virus-RPV is supported by beet western yellows virus in dicotyledonous protoplasts and plants.
    Rasochová L; Passmore BK; Falk BW; Miller WA
    Virology; 1997 May; 231(2):182-91. PubMed ID: 9168880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aphid transmission of nanoviruses.
    Gaafar YZA; Ziebell H
    Arch Insect Biochem Physiol; 2020 Jun; 104(2):e21668. PubMed ID: 32212397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transmission efficiency of Cucumber mosaic virus by aphids associated with virus epidemics in snap bean.
    Gildow FE; Shah DA; Sackett WM; Butzler T; Nault BA; Fleischer SJ
    Phytopathology; 2008 Nov; 98(11):1233-41. PubMed ID: 18943413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterologous encapsidation in transmission of plant viral particles by aphid vectors.
    Syller J
    Acta Microbiol Pol; 2000; 49(1):5-18. PubMed ID: 10997487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Citrus tristeza virus transmission by the Toxoptera citricida vector: in vitro acquisition and transmission and infectivity immunoneutralization experiments.
    Herron CM; Mirkov TE; da Graça JV; Lee RF
    J Virol Methods; 2006 Jun; 134(1-2):205-11. PubMed ID: 16490262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nucleotide sequence of cucurbit aphid-borne yellows luteovirus.
    Guilley H; Wipf-Scheibel C; Richards K; Lecoq H; Jonard G
    Virology; 1994 Aug; 202(2):1012-7. PubMed ID: 8030201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid.
    Seddas P; Boissinot S; Strub JM; Van Dorsselaer A; Van Regenmortel MH; Pattus F
    Virology; 2004 Aug; 325(2):399-412. PubMed ID: 15246278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Volatile communication in plant-aphid interactions.
    de Vos M; Jander G
    Curr Opin Plant Biol; 2010 Aug; 13(4):366-71. PubMed ID: 20627668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of a simple membrane-based nucleic acid preparation protocol for RT-PCR detection of potato viruses from aphid and plant tissues.
    Singh RP; Dilworth AD; Singh M; McLaren DL
    J Virol Methods; 2004 Nov; 121(2):163-70. PubMed ID: 15381353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pea enation mosaic and the vagaries of a plant virus.
    de Zoeten GA; Skaf JS
    Adv Virus Res; 2001; 57():323-50. PubMed ID: 11680388
    [No Abstract]   [Full Text] [Related]  

  • 52. Cross-protection among strains of barley yellow dwarf virus.
    Wen F; Lister RM; Fattouh FA
    J Gen Virol; 1991 Apr; 72 ( Pt 4)():791-9. PubMed ID: 2016594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Luteovirus interactions with aphid vector cellular components.
    Young MJ; Filichkin SA
    Trends Microbiol; 1999 Sep; 7(9):346-7. PubMed ID: 10471260
    [No Abstract]   [Full Text] [Related]  

  • 54. Development of a test to assess the banana bunchy top virus transmissibility through direct analyze of its aphid vector Pentalonia nigronervosa.
    De Clerck C; Francis F; Lepoivre P; Jijakli MH
    Commun Agric Appl Biol Sci; 2013; 78(1):49-54. PubMed ID: 23875297
    [No Abstract]   [Full Text] [Related]  

  • 55. Luteovirus: insights into pathogenicity.
    Ali M; Hameed S; Tahir M
    Arch Virol; 2014 Nov; 159(11):2853-60. PubMed ID: 25091739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nutrient supply differentially alters the dynamics of co-infecting phytoviruses.
    Smith VH
    New Phytol; 2014 Oct; 204(2):265-7. PubMed ID: 25236168
    [No Abstract]   [Full Text] [Related]  

  • 57. Experimental layout, data analysis, and thresholds in ELISA testing of maize for aphid-borne viruses.
    Caciagli P; Verderio A
    J Virol Methods; 2003 Jun; 110(2):143-52. PubMed ID: 12798241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coinfection Timing Drives Host Population Dynamics through Changes in Virulence.
    Marchetto KM; Power AG
    Am Nat; 2018 Feb; 191(2):173-183. PubMed ID: 29351014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological properties of Beet mild yellowing virus derived from a full-length cDNA clone.
    Stephan D; Maiss E
    J Gen Virol; 2006 Feb; 87(Pt 2):445-449. PubMed ID: 16432033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling nutrient and disease dynamics in a plant-pathogen system.
    Pell B; Kendig AE; Borer ET; Kuang Y
    Math Biosci Eng; 2018 Dec; 16(1):234-264. PubMed ID: 30674119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.