These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20840195)

  • 1. Cognitive control in the intertrial interval: evidence from EEG alpha power.
    Compton RJ; Arnstein D; Freedman G; Dainer-Best J; Liss A
    Psychophysiology; 2011 May; 48(5):583-90. PubMed ID: 20840195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha power is influenced by performance errors.
    Carp J; Compton RJ
    Psychophysiology; 2009 Mar; 46(2):336-43. PubMed ID: 19207203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is "conflict adaptation" driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials.
    Compton RJ; Huber E; Levinson AR; Zheutlin A
    Psychophysiology; 2012 May; 49(5):583-9. PubMed ID: 22332754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of cognitive control: evidence for within-trial conflict adaptation from frequency-tagged EEG.
    Scherbaum S; Fischer R; Dshemuchadse M; Goschke T
    Psychophysiology; 2011 May; 48(5):591-600. PubMed ID: 21044093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha power and coherence primarily reflect neural activity related to stages of motor response during a continuous monitoring task.
    Moore RA; Gale A; Morris PH; Forrester D
    Int J Psychophysiol; 2008 Aug; 69(2):79-89. PubMed ID: 18430481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty.
    Rietschel JC; Miller MW; Gentili RJ; Goodman RN; McDonald CG; Hatfield BD
    Biol Psychol; 2012 May; 90(2):127-33. PubMed ID: 22410264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.
    Caldas AL; Machado-Pinheiro W; Souza LB; Motta-Ribeiro GC; David IA
    Psychophysiology; 2012 Sep; 49(9):1215-24. PubMed ID: 22748126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and neural evidence for item-specific performance monitoring.
    Blais C; Bunge S
    J Cogn Neurosci; 2010 Dec; 22(12):2758-67. PubMed ID: 19925177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and ERP indices of response conflict in Stroop and flanker tasks.
    Tillman CM; Wiens S
    Psychophysiology; 2011 Oct; 48(10):1405-11. PubMed ID: 21457276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of concurrent working memory load on distractor and conflict processing in a name-face Stroop task.
    Jongen EM; Jonkman LM
    Psychophysiology; 2011 Jan; 48(1):31-43. PubMed ID: 20525010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-trial EEG power and phase dynamics associated with voluntary response inhibition.
    Yamanaka K; Yamamoto Y
    J Cogn Neurosci; 2010 Apr; 22(4):714-27. PubMed ID: 19413474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.
    Cohen MX; van Gaal S
    Neuroimage; 2014 Feb; 86():503-13. PubMed ID: 24185026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conflict adaptation and cognitive control adjustments following traumatic brain injury.
    Larson MJ; Kaufman DA; Perlstein WM
    J Int Neuropsychol Soc; 2009 Nov; 15(6):927-37. PubMed ID: 19765356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of conflict-monitoring at two levels of processing: reaction time distributional analyses and hemodynamic responses.
    Davelaar EJ
    Brain Res; 2008 Apr; 1202():109-19. PubMed ID: 17706186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.