BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 20840506)

  • 1. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.
    Miyadate H; Adachi S; Hiraizumi A; Tezuka K; Nakazawa N; Kawamoto T; Katou K; Kodama I; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H
    New Phytol; 2011 Jan; 189(1):190-9. PubMed ID: 20840506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3.
    Sun C; Yang M; Li Y; Tian J; Zhang Y; Liang L; Liu Z; Chen K; Li Y; Lv K; Lian X
    J Exp Bot; 2019 Nov; 70(21):6389-6400. PubMed ID: 31494666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars.
    Yan J; Wang P; Wang P; Yang M; Lian X; Tang Z; Huang CF; Salt DE; Zhao FJ
    Plant Cell Environ; 2016 Sep; 39(9):1941-54. PubMed ID: 27038090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene limiting cadmium accumulation in rice.
    Ueno D; Yamaji N; Kono I; Huang CF; Ando T; Yano M; Ma JF
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16500-5. PubMed ID: 20823253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration.
    Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX
    Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain.
    Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ
    J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the C-terminal region of the vacuolar cadmium-transporting rice OsHMA3.
    Kumagai S; Suzuki T; Tezuka K; Satoh-Nagasawa N; Takahashi H; Sakurai K; Watanabe A; Fujimura T; Akagi H
    FEBS Lett; 2014 Mar; 588(5):789-94. PubMed ID: 24492003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku.
    Tezuka K; Miyadate H; Katou K; Kodama I; Matsumoto S; Kawamoto T; Masaki S; Satoh H; Yamaguchi M; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H
    Theor Appl Genet; 2010 Apr; 120(6):1175-82. PubMed ID: 20039013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium.
    Satoh-Nagasawa N; Mori M; Nakazawa N; Kawamoto T; Nagato Y; Sakurai K; Takahashi H; Watanabe A; Akagi H
    Plant Cell Physiol; 2012 Jan; 53(1):213-24. PubMed ID: 22123790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice.
    Takahashi R; Bashir K; Ishimaru Y; Nishizawa NK; Nakanishi H
    Plant Signal Behav; 2012 Dec; 7(12):1605-7. PubMed ID: 23072989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots.
    Tefera W; Liu T; Lu L; Ge J; Webb SM; Seifu W; Tian S
    Ecotoxicol Environ Saf; 2020 Apr; 193():110245. PubMed ID: 32092577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3.
    Wang HQ; Xuan W; Huang XY; Mao C; Zhao FJ
    Plant Cell Physiol; 2021 Mar; 62(1):166-177. PubMed ID: 33300991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
    Ueno D; Koyama E; Yamaji N; Ma JF
    J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Rice
    Zhang L; Gao C; Chen C; Zhang W; Huang XY; Zhao FJ
    Environ Sci Technol; 2020 Aug; 54(16):10100-10108. PubMed ID: 32697086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of FlHMA3, a P
    Guo Q; Meng L; Humphreys MW; Scullion J; Mur LAJ
    Plant Physiol Biochem; 2017 Mar; 112():270-277. PubMed ID: 28113076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.
    Uraguchi S; Mori S; Kuramata M; Kawasaki A; Arao T; Ishikawa S
    J Exp Bot; 2009; 60(9):2677-88. PubMed ID: 19401409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice.
    Yang G; Fu S; Huang J; Li L; Long Y; Wei Q; Wang Z; Chen Z; Xia J
    Plant Sci; 2021 Jun; 307():110894. PubMed ID: 33902855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.
    Shao JF; Xia J; Yamaji N; Shen RF; Ma JF
    J Exp Bot; 2018 Apr; 69(10):2743-2752. PubMed ID: 29562302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice.
    Deng F; Yamaji N; Xia J; Ma JF
    Plant Physiol; 2013 Nov; 163(3):1353-62. PubMed ID: 24064929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.