These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 20840506)
1. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. Miyadate H; Adachi S; Hiraizumi A; Tezuka K; Nakazawa N; Kawamoto T; Katou K; Kodama I; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H New Phytol; 2011 Jan; 189(1):190-9. PubMed ID: 20840506 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3. Sun C; Yang M; Li Y; Tian J; Zhang Y; Liang L; Liu Z; Chen K; Li Y; Lv K; Lian X J Exp Bot; 2019 Nov; 70(21):6389-6400. PubMed ID: 31494666 [TBL] [Abstract][Full Text] [Related]
3. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Yan J; Wang P; Wang P; Yang M; Lian X; Tang Z; Huang CF; Salt DE; Zhao FJ Plant Cell Environ; 2016 Sep; 39(9):1941-54. PubMed ID: 27038090 [TBL] [Abstract][Full Text] [Related]
4. Gene limiting cadmium accumulation in rice. Ueno D; Yamaji N; Kono I; Huang CF; Ando T; Yano M; Ma JF Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16500-5. PubMed ID: 20823253 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related]
6. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
7. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of the C-terminal region of the vacuolar cadmium-transporting rice OsHMA3. Kumagai S; Suzuki T; Tezuka K; Satoh-Nagasawa N; Takahashi H; Sakurai K; Watanabe A; Fujimura T; Akagi H FEBS Lett; 2014 Mar; 588(5):789-94. PubMed ID: 24492003 [TBL] [Abstract][Full Text] [Related]
9. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Tezuka K; Miyadate H; Katou K; Kodama I; Matsumoto S; Kawamoto T; Masaki S; Satoh H; Yamaguchi M; Sakurai K; Takahashi H; Satoh-Nagasawa N; Watanabe A; Fujimura T; Akagi H Theor Appl Genet; 2010 Apr; 120(6):1175-82. PubMed ID: 20039013 [TBL] [Abstract][Full Text] [Related]
10. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Satoh-Nagasawa N; Mori M; Nakazawa N; Kawamoto T; Nagato Y; Sakurai K; Takahashi H; Watanabe A; Akagi H Plant Cell Physiol; 2012 Jan; 53(1):213-24. PubMed ID: 22123790 [TBL] [Abstract][Full Text] [Related]
11. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Takahashi R; Bashir K; Ishimaru Y; Nishizawa NK; Nakanishi H Plant Signal Behav; 2012 Dec; 7(12):1605-7. PubMed ID: 23072989 [TBL] [Abstract][Full Text] [Related]
12. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Tefera W; Liu T; Lu L; Ge J; Webb SM; Seifu W; Tian S Ecotoxicol Environ Saf; 2020 Apr; 193():110245. PubMed ID: 32092577 [TBL] [Abstract][Full Text] [Related]
13. Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3. Wang HQ; Xuan W; Huang XY; Mao C; Zhao FJ Plant Cell Physiol; 2021 Mar; 62(1):166-177. PubMed ID: 33300991 [TBL] [Abstract][Full Text] [Related]
14. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Ueno D; Koyama E; Yamaji N; Ma JF J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026 [TBL] [Abstract][Full Text] [Related]
16. Expression of FlHMA3, a P Guo Q; Meng L; Humphreys MW; Scullion J; Mur LAJ Plant Physiol Biochem; 2017 Mar; 112():270-277. PubMed ID: 28113076 [TBL] [Abstract][Full Text] [Related]
17. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Uraguchi S; Mori S; Kuramata M; Kawasaki A; Arao T; Ishikawa S J Exp Bot; 2009; 60(9):2677-88. PubMed ID: 19401409 [TBL] [Abstract][Full Text] [Related]
18. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Yang G; Fu S; Huang J; Li L; Long Y; Wei Q; Wang Z; Chen Z; Xia J Plant Sci; 2021 Jun; 307():110894. PubMed ID: 33902855 [TBL] [Abstract][Full Text] [Related]
19. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Shao JF; Xia J; Yamaji N; Shen RF; Ma JF J Exp Bot; 2018 Apr; 69(10):2743-2752. PubMed ID: 29562302 [TBL] [Abstract][Full Text] [Related]
20. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]