These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20840733)

  • 41. Predicting protein function by multi-label correlated semi-supervised learning.
    Jiang JQ; McQuay LJ
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1059-69. PubMed ID: 22595236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inferring Association between Compound and Pathway with an Improved Ensemble Learning Method.
    Song M; Jiang Z
    Mol Inform; 2015 Nov; 34(11-12):753-60. PubMed ID: 27491036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique.
    Bhardwaj N; Gerstein M; Lu H
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S6. PubMed ID: 20122235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning.
    Lotfi Shahreza M; Ghadiri N; Mousavi SR; Varshosaz J; Green JR
    J Biomed Inform; 2017 Apr; 68():167-183. PubMed ID: 28300647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gaussian interaction profile kernels for predicting drug-target interaction.
    van Laarhoven T; Nabuurs SB; Marchiori E
    Bioinformatics; 2011 Nov; 27(21):3036-43. PubMed ID: 21893517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction.
    Nie F; Xu D; Tsang IW; Zhang C
    IEEE Trans Image Process; 2010 Jul; 19(7):1921-32. PubMed ID: 20215078
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heter-LP: A Heterogeneous Label Propagation Method for Drug Repositioning.
    Lotfi Shahreza M; Ghadiri N; Green JR
    Methods Mol Biol; 2019; 1903():291-316. PubMed ID: 30547450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semi-supervised and unsupervised extreme learning machines.
    Huang G; Song S; Gupta JN; Wu C
    IEEE Trans Cybern; 2014 Dec; 44(12):2405-17. PubMed ID: 25415946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.
    Shi JY; Yiu SM; Li Y; Leung HC; Chin FY
    Methods; 2015 Jul; 83():98-104. PubMed ID: 25957673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disease genes prediction by HMM based PU-learning using gene expression profiles.
    Nikdelfaz O; Jalili S
    J Biomed Inform; 2018 May; 81():102-111. PubMed ID: 29571901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A probabilistic framework to predict protein function from interaction data integrated with semantic knowledge.
    Cho YR; Shi L; Ramanathan M; Zhang A
    BMC Bioinformatics; 2008 Sep; 9():382. PubMed ID: 18801191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Drug-Target Interactions With Multi-Information Fusion.
    Peng L; Liao B; Zhu W; Li Z; Li K
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):561-572. PubMed ID: 26731781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manifold regularized matrix factorization for drug-drug interaction prediction.
    Zhang W; Chen Y; Li D; Yue X
    J Biomed Inform; 2018 Dec; 88():90-97. PubMed ID: 30445219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drug-target interaction prediction by learning from local information and neighbors.
    Mei JP; Kwoh CK; Yang P; Li XL; Zheng J
    Bioinformatics; 2013 Jan; 29(2):238-45. PubMed ID: 23162055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drug-target interaction prediction: databases, web servers and computational models.
    Chen X; Yan CC; Zhang X; Zhang X; Dai F; Yin J; Zhang Y
    Brief Bioinform; 2016 Jul; 17(4):696-712. PubMed ID: 26283676
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.
    Pacharawongsakda E; Theeramunkong T
    IEEE Trans Nanobioscience; 2013 Dec; 12(4):311-20. PubMed ID: 23864226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.