BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20840752)

  • 1. Candidate gene prioritization by network analysis of differential expression using machine learning approaches.
    Nitsch D; Gonçalves JP; Ojeda F; de Moor B; Moreau Y
    BMC Bioinformatics; 2010 Sep; 11():460. PubMed ID: 20840752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network analysis of differential expression for the identification of disease-causing genes.
    Nitsch D; Tranchevent LC; Thienpont B; Thorrez L; Van Esch H; Devriendt K; Moreau Y
    PLoS One; 2009; 4(5):e5526. PubMed ID: 19436755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene- and evidence-based candidate gene selection for schizophrenia and gene feature analysis.
    Sun J; Han L; Zhao Z
    Artif Intell Med; 2010; 48(2-3):99-106. PubMed ID: 19944577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive diffusion kernel learning from biological networks for protein function prediction.
    Sun L; Ji S; Ye J
    BMC Bioinformatics; 2008 Mar; 9():162. PubMed ID: 18366736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disease gene prioritization using network and feature.
    Xie B; Agam G; Balasubramanian S; Xu J; Gilliam TC; Maltsev N; Börnigen D
    J Comput Biol; 2015 Apr; 22(4):313-23. PubMed ID: 25844670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models.
    Liu D; Ghosh D; Lin X
    BMC Bioinformatics; 2008 Jun; 9():292. PubMed ID: 18577223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PANDA: Prioritization of autism-genes using network-based deep-learning approach.
    Zhang Y; Chen Y; Hu T
    Genet Epidemiol; 2020 Jun; 44(4):382-394. PubMed ID: 32039500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning.
    Muslu O; Hoyt CT; Lacerda M; Hofmann-Apitius M; Frohlich H
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):491-500. PubMed ID: 32750869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble rank learning approach for gene prioritization.
    Lee PF; Soo VW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3507-10. PubMed ID: 24110485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding disease gene discovery by sequence based candidate prioritization.
    Adie EA; Adams RR; Evans KL; Porteous DJ; Pickard BS
    BMC Bioinformatics; 2005 Mar; 6():55. PubMed ID: 15766383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scuba: scalable kernel-based gene prioritization.
    Zampieri G; Tran DV; Donini M; Navarin N; Aiolli F; Sperduti A; Valle G
    BMC Bioinformatics; 2018 Jan; 19(1):23. PubMed ID: 29370760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning based refined differential gene expression analysis of pediatric sepsis.
    Abbas M; El-Manzalawy Y
    BMC Med Genomics; 2020 Aug; 13(1):122. PubMed ID: 32859206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating machine learning approaches for aiding probe selection for gene-expression arrays.
    Tobler JB; Molla MN; Nuwaysir EF; Green RD; Shavlik JW
    Bioinformatics; 2002; 18 Suppl 1():S164-71. PubMed ID: 12169544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches for recognizing disease genes based on network.
    Zou Q; Li J; Wang C; Zeng X
    Biomed Res Int; 2014; 2014():416323. PubMed ID: 24707485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranking Support Vector Machine with Kernel Approximation.
    Chen K; Li R; Dou Y; Liang Z; Lv Q
    Comput Intell Neurosci; 2017; 2017():4629534. PubMed ID: 28293256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning pipeline for quantitative phenotype prediction from genotype data.
    Guzzetta G; Jurman G; Furlanello C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S3. PubMed ID: 21034428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.