These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 20840763)

  • 21. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system.
    Dassa B; Borovok I; Lamed R; Henrissat B; Coutinho P; Hemme CL; Huang Y; Zhou J; Bayer EA
    BMC Genomics; 2012 May; 13():210. PubMed ID: 22646801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose.
    Krauss J; Zverlov VV; Schwarz WH
    Appl Environ Microbiol; 2012 Jun; 78(12):4301-7. PubMed ID: 22522677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
    Tsai SL; DaSilva NA; Chen W
    ACS Synth Biol; 2013 Jan; 2(1):14-21. PubMed ID: 23656322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components.
    Adams JJ; Currie MA; Ali S; Bayer EA; Jia Z; Smith SP
    J Mol Biol; 2010 Mar; 396(4):833-9. PubMed ID: 20070943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cellulosomal double-dockerin module from Clostridium thermocellum shows distinct structural and cohesin-binding features.
    Chen C; Yang H; Dong S; You C; Moraïs S; Bayer EA; Liu YJ; Xuan J; Cui Q; Mizrahi I; Feng Y
    Protein Sci; 2024 Apr; 33(4):e4937. PubMed ID: 38501488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes.
    Bule P; Alves VD; Israeli-Ruimy V; Carvalho AL; Ferreira LMA; Smith SP; Gilbert HJ; Najmudin S; Bayer EA; Fontes CMGA
    Sci Rep; 2017 Apr; 7(1):759. PubMed ID: 28389644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.
    Weinstein JY; Slutzki M; Karpol A; Barak Y; Gul O; Lamed R; Bayer EA; Fried DB
    J Mol Recognit; 2015 Mar; 28(3):148-54. PubMed ID: 25639797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules.
    Haimovitz R; Barak Y; Morag E; Voronov-Goldman M; Shoham Y; Lamed R; Bayer EA
    Proteomics; 2008 Mar; 8(5):968-79. PubMed ID: 18219699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput screening of cohesin mutant libraries on cellulose microarrays.
    Slutzki M; Ruimy V; Morag E; Barak Y; Haimovitz R; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():453-63. PubMed ID: 22608741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome.
    Bule P; Alves VD; Leitão A; Ferreira LM; Bayer EA; Smith SP; Gilbert HJ; Najmudin S; Fontes CM
    J Biol Chem; 2016 Dec; 291(52):26658-26669. PubMed ID: 27875311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbohydrate Depolymerization by Intricate Cellulosomal Systems.
    Moraïs S; Stern J; Artzi L; Fontes CMGA; Bayer EA; Mizrahi I
    Methods Mol Biol; 2023; 2657():53-77. PubMed ID: 37149522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the functionality and stability of designer cellulosomes at elevated temperatures.
    Galanopoulou AP; Moraïs S; Georgoulis A; Morag E; Bayer EA; Hatzinikolaou DG
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8731-43. PubMed ID: 27207145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulosomes: Highly Efficient Cellulolytic Complexes.
    Alves VD; Fontes CMGA; Bule P
    Subcell Biochem; 2021; 96():323-354. PubMed ID: 33252735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein.
    Xu Q; Gao W; Ding SY; Kenig R; Shoham Y; Bayer EA; Lamed R
    J Bacteriol; 2003 Aug; 185(15):4548-57. PubMed ID: 12867464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions.
    Hamberg Y; Ruimy-Israeli V; Dassa B; Barak Y; Lamed R; Cameron K; Fontes CM; Bayer EA; Fried DB
    PeerJ; 2014; 2():e636. PubMed ID: 25374780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-surface exposure of a hybrid 3-cohesin scaffoldin allowing the functionalization of Escherichia coli envelope.
    Vita N; Borne R; Fierobe HP
    Biotechnol Bioeng; 2020 Mar; 117(3):626-636. PubMed ID: 31814100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible and multi-cyclic protein-protein interaction in bacterial cellulosome-mimic system using rod-shaped viral nanostructure.
    Kim HJ; Lee EJ; Park JS; Sim SJ; Lee J
    J Biotechnol; 2016 Mar; 221():101-6. PubMed ID: 26820321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of scaffoldin mechanostability on cellulosomal activity.
    Galera-Prat A; Vera AM; Moraïs S; Vazana Y; Bayer EA; Carrión-Vázquez M
    Biomater Sci; 2020 Jul; 8(13):3601-3610. PubMed ID: 32232253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.