BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 20842177)

  • 1. Pathways of mammalian replication fork restart.
    Petermann E; Helleday T
    Nat Rev Mol Cell Biol; 2010 Oct; 11(10):683-7. PubMed ID: 20842177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of stalled fork restart via fork regression in the T4 replication system.
    Manosas M; Perumal SK; Croquette V; Benkovic SJ
    Science; 2012 Nov; 338(6111):1217-20. PubMed ID: 23197534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-selective repair and restart of replication forks by DNA translocases.
    Bétous R; Couch FB; Mason AC; Eichman BF; Manosas M; Cortez D
    Cell Rep; 2013 Jun; 3(6):1958-69. PubMed ID: 23746452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria.
    Thakur RS; Basavaraju S; Khanduja JS; Muniyappa K; Nagaraju G
    J Biol Chem; 2015 Oct; 290(40):24119-39. PubMed ID: 26276393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bacillus subtilis PriA Winged Helix Domain Is Critical for Surviving DNA Damage.
    Matthews LA; Simmons LA
    J Bacteriol; 2022 Mar; 204(3):e0053921. PubMed ID: 35007156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue.
    Appanah R; Jones D; Falquet B; Rass U
    Curr Genet; 2020 Dec; 66(6):1085-1092. PubMed ID: 32909097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks.
    Minca EC; Kowalski D
    Mol Cell; 2010 Jun; 38(5):649-61. PubMed ID: 20541998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation.
    McGlynn P; Lloyd RG
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8227-34. PubMed ID: 11459957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair.
    Sun W; Nandi S; Osman F; Ahn JS; Jakovleska J; Lorenz A; Whitby MC
    Mol Cell; 2008 Oct; 32(1):118-28. PubMed ID: 18851838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA2 drives processing and restart of reversed replication forks in human cells.
    Thangavel S; Berti M; Levikova M; Pinto C; Gomathinayagam S; Vujanovic M; Zellweger R; Moore H; Lee EH; Hendrickson EA; Cejka P; Stewart S; Lopes M; Vindigni A
    J Cell Biol; 2015 Mar; 208(5):545-62. PubMed ID: 25733713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis.
    Million-Weaver S; Samadpour AN; Merrikh H
    J Bacteriol; 2015 Jul; 197(14):2374-82. PubMed ID: 25939832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts.
    Pasero P; Vindigni A
    Annu Rev Genet; 2017 Nov; 51():477-499. PubMed ID: 29178820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands.
    Guy CP; Bolt EL
    Nucleic Acids Res; 2005; 33(11):3678-90. PubMed ID: 15994460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells defective for replication restart undergo replication fork reversal.
    Grompone G; Ehrlich D; Michel B
    EMBO Rep; 2004 Jun; 5(6):607-12. PubMed ID: 15167889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of replication fork restart in Escherichia coli.
    Marians KJ
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):71-7. PubMed ID: 15065658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the BLM helicase in replication fork management.
    Wu L
    DNA Repair (Amst); 2007 Jul; 6(7):936-44. PubMed ID: 17363339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replisome assembly and the direct restart of stalled replication forks.
    Heller RC; Marians KJ
    Nat Rev Mol Cell Biol; 2006 Dec; 7(12):932-43. PubMed ID: 17139333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of RecQ family helicases: possible involvement of Bloom's and Werner's syndrome gene products in guarding genome integrity during DNA replication.
    Enomoto T
    J Biochem; 2001 Apr; 129(4):501-7. PubMed ID: 11275547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.