BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 20842177)

  • 21. Cooperation of RAD51 and RAD54 in regression of a model replication fork.
    Bugreev DV; Rossi MJ; Mazin AV
    Nucleic Acids Res; 2011 Mar; 39(6):2153-64. PubMed ID: 21097884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recombination and restart at blocked replication forks.
    Scully R; Elango R; Panday A; Willis NA
    Curr Opin Genet Dev; 2021 Dec; 71():154-162. PubMed ID: 34464818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks.
    Heller RC; Marians KJ
    J Biol Chem; 2005 Oct; 280(40):34143-51. PubMed ID: 16079128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding and melting of D-loops by the Bloom syndrome helicase.
    van Brabant AJ; Ye T; Sanz M; German III JL; Ellis NA; Holloman WK
    Biochemistry; 2000 Nov; 39(47):14617-25. PubMed ID: 11087418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
    Chavez DA; Greer BH; Eichman BF
    J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of BLM, dissociation from topoisomerase IIIalpha, and colocalization with gamma-H2AX after topoisomerase I-induced replication damage.
    Rao VA; Fan AM; Meng L; Doe CF; North PS; Hickson ID; Pommier Y
    Mol Cell Biol; 2005 Oct; 25(20):8925-37. PubMed ID: 16199871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation.
    Malacaria E; Pugliese GM; Honda M; Marabitti V; Aiello FA; Spies M; Franchitto A; Pichierri P
    Nat Commun; 2019 Mar; 10(1):1412. PubMed ID: 30926821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stalled replication forks: making ends meet for recognition and stabilization.
    Masai H; Tanaka T; Kohda D
    Bioessays; 2010 Aug; 32(8):687-97. PubMed ID: 20658707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks.
    Wang Y; Sun Z; Bianco PR; Lyubchenko YL
    J Biol Chem; 2020 May; 295(18):6043-6052. PubMed ID: 32209655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse.
    Nguyen MO; Jalan M; Morrow CA; Osman F; Whitby MC
    Elife; 2015 Mar; 4():e04539. PubMed ID: 25806683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Bloom's syndrome helicase can promote the regression of a model replication fork.
    Ralf C; Hickson ID; Wu L
    J Biol Chem; 2006 Aug; 281(32):22839-46. PubMed ID: 16766518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome.
    Bruand C; Farache M; McGovern S; Ehrlich SD; Polard P
    Mol Microbiol; 2001 Oct; 42(1):245-55. PubMed ID: 11679082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ruvA Mutants that resolve Holliday junctions but do not reverse replication forks.
    Baharoglu Z; Bradley AS; Le Masson M; Tsaneva I; Michel B
    PLoS Genet; 2008 Mar; 4(3):e1000012. PubMed ID: 18369438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-replicative helicases at the replication fork.
    Heller RC; Marians KJ
    DNA Repair (Amst); 2007 Jul; 6(7):945-52. PubMed ID: 17382604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirement for RecFOR-mediated recombination in priA mutant.
    Grompone G; Sanchez N; Dusko Ehrlich S; Michel B
    Mol Microbiol; 2004 Apr; 52(2):551-62. PubMed ID: 15066040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RIF1 promotes replication fork protection and efficient restart to maintain genome stability.
    Mukherjee C; Tripathi V; Manolika EM; Heijink AM; Ricci G; Merzouk S; de Boer HR; Demmers J; van Vugt MATM; Ray Chaudhuri A
    Nat Commun; 2019 Jul; 10(1):3287. PubMed ID: 31337767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Possible anti-recombinogenic role of Bloom's syndrome helicase in double-strand break processing.
    Onclercq-Delic R; Calsou P; Delteil C; Salles B; Papadopoulo D; Amor-Guéret M
    Nucleic Acids Res; 2003 Nov; 31(21):6272-82. PubMed ID: 14576316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication fork reactivation downstream of a blocked nascent leading strand.
    Heller RC; Marians KJ
    Nature; 2006 Feb; 439(7076):557-62. PubMed ID: 16452972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rescuing stalled or damaged replication forks.
    Yeeles JT; Poli J; Marians KJ; Pasero P
    Cold Spring Harb Perspect Biol; 2013 May; 5(5):a012815. PubMed ID: 23637285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.