These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20842375)

  • 21. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach.
    Mackintosh KA; Montoye AH; Pfeiffer KA; McNarry MA
    Physiol Meas; 2016 Oct; 37(10):1728-1740. PubMed ID: 27653339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural network versus activity-specific prediction equations for energy expenditure estimation in children.
    Ruch N; Joss F; Jimmy G; Melzer K; Hänggi J; Mäder U
    J Appl Physiol (1985); 2013 Nov; 115(9):1229-36. PubMed ID: 23990244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children.
    Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ
    PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking.
    Johnson M; Meltz K; Hart K; Schmudlach M; Clarkson L; Borman K
    J Sports Sci; 2015; 33(8):769-76. PubMed ID: 25356920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of energy expenditure and physical activity in preschoolers.
    Butte NF; Wong WW; Lee JS; Adolph AL; Puyau MR; Zakeri IF
    Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative validity of energy expenditure prediction algorithms using wearable devices for people with spinal cord injury.
    Shwetar YJ; Veerubhotla AL; Huang Z; Ding D
    Spinal Cord; 2020 Jul; 58(7):821-830. PubMed ID: 32020039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. METs and accelerometry of walking in older adults: standard versus measured energy cost.
    Hall KS; Howe CA; Rana SR; Martin CL; Morey MC
    Med Sci Sports Exerc; 2013 Mar; 45(3):574-82. PubMed ID: 23059862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity of the Actical for estimating free-living physical activity.
    Crouter SE; Dellavalle DM; Horton M; Haas JD; Frongillo EA; Bassett DR
    Eur J Appl Physiol; 2011 Jul; 111(7):1381-9. PubMed ID: 21153659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure.
    Sasaki JE; Hickey A; Mavilia M; Tedesco J; John D; Kozey Keadle S; Freedson PS
    J Phys Act Health; 2015 Feb; 12(2):149-54. PubMed ID: 24770438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy.
    Ryan JM; Walsh M; Gormley J
    J Neuroeng Rehabil; 2014 Aug; 11():116. PubMed ID: 25097005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between physical activity measured using accelerometers and energy expenditure measured using doubly labelled water in Indian children.
    Krishnaveni GV; Veena SR; Kuriyan R; Kishore RP; Wills AK; Nalinakshi M; Kehoe S; Fall CH; Kurpad AV
    Eur J Clin Nutr; 2009 Nov; 63(11):1313-9. PubMed ID: 19690580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of the ActiGraph two-regression model for predicting energy expenditure.
    Rothney MP; Brychta RJ; Meade NN; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2010 Sep; 42(9):1785-92. PubMed ID: 20142778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validity and comparability of a wrist-worn accelerometer in children.
    Ekblom O; Nyberg G; Bak EE; Ekelund U; Marcus C
    J Phys Act Health; 2012 Mar; 9(3):389-93. PubMed ID: 22454440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.