BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20842696)

  • 1. Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth.
    Martínez-Abadías N; Percival C; Aldridge K; Hill CA; Ryan T; Sirivunnabood S; Wang Y; Jabs EW; Richtsmeier JT
    Dev Dyn; 2010 Nov; 239(11):3058-71. PubMed ID: 20842696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis.
    Yin L; Du X; Li C; Xu X; Chen Z; Su N; Zhao L; Qi H; Li F; Xue J; Yang J; Jin M; Deng C; Chen L
    Bone; 2008 Apr; 42(4):631-43. PubMed ID: 18242159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice.
    Wang Y; Sun M; Uhlhorn VL; Zhou X; Peter I; Martinez-Abadias N; Hill CA; Percival CJ; Richtsmeier JT; Huso DL; Jabs EW
    BMC Dev Biol; 2010 Feb; 10():22. PubMed ID: 20175913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome.
    Luo F; Xie Y; Xu W; Huang J; Zhou S; Wang Z; Luo X; Liu M; Chen L; Du X
    Int J Biol Sci; 2017; 13(1):32-45. PubMed ID: 28123344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome.
    Kim B; Shin H; Kim W; Kim H; Cho Y; Yoon H; Baek J; Woo K; Lee Y; Ryoo H
    J Dent Res; 2020 Feb; 99(2):223-232. PubMed ID: 31869252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.
    Martínez-Abadías N; Heuzé Y; Wang Y; Jabs EW; Aldridge K; Richtsmeier JT
    PLoS One; 2011; 6(10):e26425. PubMed ID: 22053191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice.
    Motch Perrine SM; Cole TM; Martínez-Abadías N; Aldridge K; Jabs EW; Richtsmeier JT
    BMC Dev Biol; 2014 Feb; 14():8. PubMed ID: 24580805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain phenotypes in two FGFR2 mouse models for Apert syndrome.
    Aldridge K; Hill CA; Austin JR; Percival C; Martinez-Abadias N; Neuberger T; Wang Y; Jabs EW; Richtsmeier JT
    Dev Dyn; 2010 Mar; 239(3):987-97. PubMed ID: 20077479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues.
    Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT
    Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome.
    Martínez-Abadías N; Holmes G; Pankratz T; Wang Y; Zhou X; Jabs EW; Richtsmeier JT
    Dis Model Mech; 2013 May; 6(3):768-79. PubMed ID: 23519026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
    Holmes G; Basilico C
    Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facial suture synostosis of newborn Fgfr1(P250R/+) and Fgfr2(S252W/+) mouse models of Pfeiffer and Apert syndromes.
    Purushothaman R; Cox TC; Maga AM; Cunningham ML
    Birth Defects Res A Clin Mol Teratol; 2011 Jul; 91(7):603-9. PubMed ID: 21538817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts.
    Suzuki H; Suda N; Shiga M; Kobayashi Y; Nakamura M; Iseki S; Moriyama K
    J Cell Physiol; 2012 Sep; 227(9):3267-77. PubMed ID: 22105374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble form of FGFR2 with S252W partially prevents craniosynostosis of the apert mouse model.
    Morita J; Nakamura M; Kobayashi Y; Deng CX; Funato N; Moriyama K
    Dev Dyn; 2014 Apr; 243(4):560-7. PubMed ID: 24259495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrantly activated Wnt/β-catenin pathway co-receptors LRP5 and LRP6 regulate osteoblast differentiation in the developing coronal sutures of an Apert syndrome (Fgfr2
    Min Swe NM; Kobayashi Y; Kamimoto H; Moriyama K
    Dev Dyn; 2021 Mar; 250(3):465-476. PubMed ID: 32822074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel molecular pathways elicited by mutant FGFR2 may account for brain abnormalities in Apert syndrome.
    Yeh E; Fanganiello RD; Sunaga DY; Zhou X; Holmes G; Rocha KM; Alonso N; Matushita H; Wang Y; Jabs EW; Passos-Bueno MR
    PLoS One; 2013; 8(4):e60439. PubMed ID: 23593218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects.
    Holmes G; O'Rourke C; Motch Perrine SM; Lu N; van Bakel H; Richtsmeier JT; Jabs EW
    Development; 2018 Oct; 145(19):. PubMed ID: 30228104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of Apert (P253R mutation) and Pfeiffer (C278F mutation) syndromes and suggesting a basis for differences in their cranial phenotypes.
    Britto JA; Moore RL; Evans RD; Hayward RD; Jones BM
    J Neurosurg; 2001 Oct; 95(4):660-73. PubMed ID: 11596961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis.
    Yokota M; Kobayashi Y; Morita J; Suzuki H; Hashimoto Y; Sasaki Y; Akiyoshi K; Moriyama K
    PLoS One; 2014; 9(7):e101693. PubMed ID: 25003957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in Apert syndrome model mice.
    Shin HR; Kim BS; Kim HJ; Yoon H; Kim WJ; Choi JY; Ryoo HM
    J Cell Physiol; 2022 Apr; 237(4):2155-2168. PubMed ID: 35048384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.